chung minh rằng neu so tự nhiên a không chia hết cho 5 thi a^8+3a^4-4 chia hết cho 100
2, cho p nguyên tố va n thuộc N biet 2p+1=n^3, tim n,p
cho a là số tự nhiên lớn hơn 5 và không chia hết cho 5
chứng minh rằng a\(^{8n}\)+3a\(^{4n}\)- 4 chia hết cho 5, với mọi số tự nhiên n.
Với a,b là các số nguyên. Chứng minh rằng nếu 4a^2+3ab-11b^2 chia het cho 5 thì a^4-b^4 chia hết cho 5
Bài 1: Chứng minh rằng
a) P = (a+5)(a+8) chia hết cho 2
b) Q = ab(a+b) chia hết cho 2
Bài 2: cho a thuộc N. chứng minh a2-8 không chia hết cho 5
Bài 3: Chứng minh rằng n5-n chia hết cho 10
Với a,b nguyên. Chứng minh rằng nếu 4a2 +3ab -11b2 chia hết cho 5 thì a4 -b4 chia hết cho 5
1/chứng minh rằng nếu \(a^2+b^2\)chia hết cho 3 thì cả a và b đều chia hết cho 3
2/ chứng minh rằng \(1^n+2^n+3^n+4^n\)chia hết cho 5 khi và chỉ khi n không chia hết cho 4 ,n thuộc N*
3/ tìm tất cả số tự nhiên n để
a/ \(3^n+63\)chia hết cho 72
b/ \(2^{2n}+2^n+1\)chia hết cho 7
Với a, b là các số nguyên. Chứng minh rằng nếu 4a2 + 3ab - 11b2 chia hết cho 5 thì a4 - b4 chia hết cho 5.
Cho a không chia hết cho 5 . cmr f(a) = a8 + 3a4 - 4 \(⋮\)100
chứng minh răng nếu a,b thuộc Z và 3a +2b chia hết cho 17 thì 10a+b chia hết cho 17. Điều ngược lại có đúng không ?
Vì sao ?