\(\left(x-2011\right)^{x+1}-\left(x-2011\right)^{x+2011}=0\)
Lam bai co loi giai giup minh nha
Tìm x biết
\(\left(x-2011\right)^{x+1}-\left(x-2011\right)^{x+2011}=0\)
Ta cÓ : ( x - 2011) x+ 1 - ( x - 2011)x + 2011
=) x - 2011= 0 =) x = 2011
Giải các phương trình sau:
a) \(x^3-6x^2-9x+14=0\)
b) \(\frac{\left(2010-x\right)^2-\left(2010-x\right)\left(x-2011\right)+\left(x-2011\right)^2}{\left(2010-x\right)^2+\left(2010+x\right)\left(x-2011\right)+\left(x-2011\right)^2}\)
a) \(x^3-6x^2-9x+14=0\)
\(\Leftrightarrow x^3-8x^2+2x^2+7x-16x+14=0\)
\(\Leftrightarrow\left(x^3-8x^2+7x\right)+\left(2x^2-16x+14\right)=0\)
\(\Leftrightarrow x\left(x^2-8x+7\right)+2\left(x^2-8x+7\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-8x+7\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-7x-x+7\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x-7\right)-\left(x-7\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x-7\right)=0\)
\(\Leftrightarrow x\in\left\{-2;1;7\right\}\)
Giải các phương trình sau:
a) \(x^3-6x^2-9x+14=0\)
b) \(\frac{\left(2010-x\right)^2-\left(2010-x\right)\left(x-2011\right)+\left(x-2011\right)^2}{\left(2010-x\right)^2+\left(2010+x\right)\left(x-2011\right)+\left(x-2011\right)^2}\)
Lời giải:
a)
$x^3-6x^2-9x+14=0$
$\Leftrightarrow x^3-x^2-5x^2+5x-14x+14=0$
$\Leftrightarrow x^2(x-1)-5x(x-1)-14(x-1)=0$
$\Leftrightarrow (x-1)(x^2-5x-14)=0$
$\Leftrightarrow (x-1)(x^2-7x+2x-14)=0$
$\Leftrightarrow (x-1)[x(x-7)+2(x-7)]=0$
$\Leftrightarrow (x-1)(x+2)(x-7)=0$
$\Rightarrow x=1; x=-2$ hoặc $x=7$
b)
Bạn tham khảo tại đây:
Câu hỏi của Lương Đức Hưng - Toán lớp 8 | Học trực tuyến
\(\left(x+\sqrt{\left(x^2+2011\right)}\right).\left(y+\sqrt{\left(y^2+2011\right)}\right)=2011\). Tính gía trị biểu thức:
A=\(y=\frac{x^{2011^{ }}+y^{2011}}{\left(x^{2011}+y^4+1\right)^{2011}}\)
b. Cho p,q là 2 số nguyên tố lớn hơn 3.Biets rằng p-q=2
Chứng minh: (p+q) chia hết cho 12
tìm x
\(\left(x-2011\right)^{x+1}-\left(x-2011\right) ^{x+2011}\)
giai phuong trinh \(\left|x+2\right|^{2010}+\left|x+3\right|^{2011}=1\)
Nhận thấy \(\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\) là nghiệm của pt
- Với \(x>-2\Rightarrow\left\{{}\begin{matrix}\left|x+2\right|>0\\\left|x+3\right|>1\end{matrix}\right.\) \(\Rightarrow\left|x+2\right|^{2010}+\left|x+3\right|^{2011}>1\)
\(\Rightarrow\) pt vô nghiệm
- Với \(x< -3\Rightarrow\left\{{}\begin{matrix}\left|x+2\right|>1\\\left|x+3\right|>0\end{matrix}\right.\) \(\Rightarrow\left|x+2\right|^{2010}+\left|x+3\right|^{2011}>1\)
\(\Rightarrow\) pt vô nghiệm
- Với \(-3< x< -2\Rightarrow\left\{{}\begin{matrix}\left|x+3\right|< 1\\\left|x+2\right|< 1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x+2\right|^{2010}< \left|x+2\right|\\\left|x+3\right|^{2011}< \left|x+3\right|\end{matrix}\right.\) \(\Rightarrow VT< \left|x+2\right|+\left|x+3\right|=-x-2+x+3=1\)
\(\Rightarrow\) pt vô nghiệm
Vậy pt có đúng 2 nghiệm \(\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)
cho x,y thoả mãn \(\left(x+\sqrt{x^2+2011}\right)\left(y+\sqrt{y^2+2011}\right)=2011\). Tính x+y
giai cac phuong trinh sau \(\left|x+2\right|+\left|x+9\right|+\left|x+2011\right|=4x\)
VT>=0 suy ra 4x>=0
suy ra x>=0
..................................................................................................
Do : VP ≥ 0
=> VT ≥ 0
=> 4x ≥ 0
=> x ≥ 0
nên Phương trình trên có dạng :
x + 2 + x + 9 + x + 2011 = 4x
<=> 3x + 2022 = 4x
<=> x = 2022 ( thỏa mãn )
KL....
giai pt: \(\left(x-2011\right).\left(3x^2+2012\right)=0\)
(x-2011).(3x^2+2012)=0
<=>x-2011=0 hoặc 3x^2+2012=0
<=>x=2011. , 3x^2=-2012<=>x^2=-2012/3 vô lý=>x vô nghiệm
S={2011}