tìm x, y \(\in\)Z
xy + 7x - 3y= 32
5x -1 = 2x -4
Tìm x,y thuộc z
xy-2x-3y+1=0
Lời giải:
$xy-2x-3y+1=0$
$(xy-2x)-(3y-6)+1=6$
$x(y-2)-3(y-2)=5$
$(x-3)(y-2)=5$.
Đến đây, do $x-3, y-2$ đều là số nguyên nên ta có bảng sau:
Tìm x,y,z
a)7x=3y và x.y=84
b)7x=3y và 5y-2x= -4
c)2x=3y=5z và x+2y-3z
a) \(7x=3y\Rightarrow\)\(\frac{x}{3}=\frac{y}{7}\)
Đặt \(\frac{x}{3}=\frac{y}{7}=k\Rightarrow x=3k;y=7k\)
Có: x.y=84
\(\Rightarrow3k\cdot7k=84\)
\(\Rightarrow k^2=4\Rightarrow\left[\begin{array}{nghiempt}k=2\\k=-2\end{array}\right.\)
Với k=2 thì x=6 ;y=14
Với k=-2 thì x=-6 ;y =-14
b) \(7x=3y\Rightarrow\)\(\frac{x}{3}=\frac{y}{7}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{5y-2x}{5\cdot7-2\cdot3}=\frac{-4}{29}\)
=> \(\begin{cases}x=-\frac{12}{29}\\y=-\frac{28}{29}\end{cases}\)
c) \(2x=3y=5z\)
\(\Leftrightarrow\)\(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)
=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tc của dãy tỉ số bằng nhau ta co:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+2y-3z}{15+2\cdot10-3\cdot6}\)
thiếu đề
Tìm x,y,z biết
1)2x=3y-2x và x+y=14
2)5x=4y+2y và x+y=-56
3)3x+2y=7y-3x và x-y=10
4)7x-2y=5x-3y và 2x+3y=20
5)2x=3y-2x=5z và x-y+z=99
6)5x-2y=4y=3z-4y và x+y-z=70
Tìm x,y biết : x/3 = y/4 và:
1. 3y - 7x = 42
2. 2x + y =-16
3. 3x - y =-25
Tìm GTNN của các biểu thức sau:
1,P=9x^2-7x+2
2,P=x^4+4(y^2+x-xy-2y+1)+6
3,P=4x(x+y+1)+y(y+2)+5
4,P=x^2+3y(3y-2x-2)+2(x+4)+3
Trả lời:
1, \(P=9x^2-7x+2=9\left(x^2-\frac{7}{9}x+\frac{2}{9}\right)=9\left[\left(x^2-2x\frac{7}{18}+\frac{49}{324}\right)+\frac{23}{324}\right]\)
\(=9\left[\left(x-\frac{7}{18}\right)^2+\frac{23}{324}\right]=9\left(x-\frac{7}{18}\right)^2+\frac{23}{36}\)
Ta có: \(9\left(x-\frac{7}{18}\right)^2\ge0\forall x\)
\(\Leftrightarrow9\left(x-\frac{7}{18}\right)^2+\frac{23}{26}\ge\frac{23}{26}\forall x\)
Dấu "=" xảy ra khi \(x-\frac{7}{18}=0\Leftrightarrow x=\frac{7}{18}\)
Vậy GTNN của P = 23/36 khi x = 7/18
Tìm x,y,z biết:
Tìm x,y,z biết:
a) 7x-2y=5x-3y và 2x+3y=20
b) 2x=3y=4z-2y và x+y+z=45
c) 3x=4y-2x=7z-4y và x+y-2z=10
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
c.
$3x=4y-2x$
$\Rightarrow 5x=4y\Rightarrow x=\frac{4}{5}y$
$3x=7z-4y$
$\Leftrightarrow \frac{12}{5}y=7z-4y$
$\Leftrightarrow \frac{32}{5}y=7z\Rightarrow z=\frac{32}{35}y$
Khi đó:
$x+y-2z=10$
$\frac{4}{5}y+y-2.\frac{32}{35}y=10$
$y.\frac{-1}{35}=10$
$y=-350$
$x=\frac{4}{5}y=\frac{4}{5}.(-350)=-280$
$z=\frac{32}{35}y=\frac{32}{35}.(-350)=-320$
a. x/6=y/9 và x-y=30
b. x/y=5/4 và x+y=18
c. x/3=y/4 và 2x+5y=10
d. 2x/3y=-1/3 và -2x+3y=7
e. 7x=3y và x-y=16
\(\frac{x}{6}=\frac{y}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\Rightarrow\frac{x}{6}=\frac{y}{9}=\frac{x-y}{6-9}=\frac{30}{-3}=-10\)
\(\Rightarrow\frac{x}{6}=-10\Rightarrow x=-60\)
\(\frac{y}{9}=-10\Rightarrow y=-90\)
\(\frac{x}{y}=\frac{5}{4}\Rightarrow\frac{x}{4}=\frac{y}{5}\)
Áp dụng tính chất DTSBN :
\(\Rightarrow\frac{x}{4}=\frac{y}{5}=\frac{18}{9}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=2\Rightarrow x=8\\\frac{y}{5}=2\Rightarrow y=10\end{cases}}\)
\(e,7x=3y\Rightarrow\frac{x}{3}=\frac{y}{7}\)
ADTCDTSBN:
\(\Rightarrow\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)
\(\frac{x}{3}=-4\Rightarrow x=-12\)
\(\frac{y}{7}=-4\Rightarrow y=-28\)
tìm giá trị x y
a.3y-2xy+2x=4
b.7x-xy+2x=18
tìm x,y,z biết
3x=2y ; 7x=5z, x-y+z=32
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) và x+y+z=49
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\) và 2x+3y-z=50
Ta có : 3x = 2y => x/2 = y/3
7x = 5z => x/5 = z/7
=> x/2 = y/3 ; x/5 = z/7
=> x/10 = y/15 ; x/10 = z/21
=> x/10 = y/15 = z/21
Áp dụng tính chất dãy tỉ số bằng nhau :
x/10 = y /15 = z/21 = (x-y+z)/(10-15+21) = 32/16 = 2
đến đây xét x,y,z
Câu b tương tự