Cho M = x ( x-3 ) với giá trị nào của x thì M lớn hơn 0
cho hai biểu thức : M=5x-3/8+6 ; N=x+5/6 với giá trị nào của x thì giá trị nào của biểu thức M lớn hơn giá trị của biểu thức N là 8 ?
Với giá trị nào của m thì pt : \(x^4-\left(2m+1\right)x^2+m+3=0\) có 4 nghiệm phân biệt trong đó một nghiệm nhỏ hơn -2 còn 3 nghiệm kia lớn hơn -1.
Đặt \(x^2=t\ge0\Rightarrow f\left(t\right)=t^2-\left(2m+1\right)t+m+3=0\) (1)
Pt đã cho có 4 nghiệm pb khi (1) có 2 nghiệm pb đều dương
\(\Rightarrow\left\{{}\begin{matrix}\Delta=\left(2m+1\right)^2-4\left(m+3\right)>0\\t_1+t_2=2m+1>0\\t_1t_2=m+3>0\end{matrix}\right.\) \(\Rightarrow m>\dfrac{\sqrt{11}}{2}\)
Không mất tính tổng quát, giả sử 2 nghiệm dương của (1) là \(t_1< t_2\)
Khi đó 4 nghiệm của pt đã cho là: \(-\sqrt{t_2}< -\sqrt{t_1}< \sqrt{t_1}< \sqrt{t_2}\)
Do đó điều kiện đề bài tương đương:
\(\left\{{}\begin{matrix}-\sqrt{t_2}< -2\\-\sqrt{t_1}>-1\\\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}t_2>4\\t_1< 1\end{matrix}\right.\)
Bài toàn trở thành: tìm m để (1) có 2 nghiệm dương pb thỏa mãn: \(t_1< 1< 4< t_2\)
\(\Rightarrow\left\{{}\begin{matrix}1.f\left(1\right)< 0\\1.f\left(4\right)< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1-\left(2m+1\right)+m+3< 0\\16-4\left(2m+1\right)+m+3< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>3\\m>\dfrac{15}{7}\end{matrix}\right.\) \(\Rightarrow m>3\)
Kết hợp \(m>\dfrac{\sqrt{11}}{2}\Rightarrow m>3\)
Cho hàm số y = f(x) với tập xác định D. Trong các phát biểu sau đây phát biểu nào đúng?
A. Giá trị lớn nhất của hàm số đã cho là số lớn hơn mọi giá trị của hàm số.
B. Nếu f(x) ≤ M, ∀x ∈ D thì M là giá trị lớn nhất của hàm số y = f(x).
C. Số M = f( x 0 ) trong đó x 0 ∈ D là giá trị lớn nhất của hàm số y = f(x) nếu M > f(x), ∀x ∈ D
D. Nếu tồn tại x 0 ∈ D sao cho M = f( x 0 ) và M ≥ f(x),∀x ∈ D thì M là giá trị lớn nhất của hàm số đã cho.
Số 2 lớn hơn mọi giá trị khác của hàm số f(x) = sinx với tập xác định D = R nhưng 2 không phải là giá trị lớn nhất của hàm số này (giá trị lớn nhất là 1); vì vậy A sai. Cũng như vậy B sai với f(x) = sinx, D = R, M = 2. Phát biểu C tự mâu thuẫn: vì M = f( x 0 ), x 0 ∈ D nên hay không xảy ra M > f(x), ∀x ∈ D.
Đáp án: D
Với giá trị nào của m thì phương trình ẩn x: x – 2 = 3m + 4 có nghiệm lớn hơn 3
x – 2 = 3m + 4
⇔x = 3m + 6
Phương trình x – 2 = 3m + 4 có nghiệm lớn hơn 3 khi và chỉ khi: 3m + 6 > 3.
Giải: 3m + 6 > 3 có m > -1
Vậy với m > -1 thì phương trình ẩn x là x – 2 = 3m + 4 có nghiệm lớn hơn 3.
cho M = x. ( x - 3 ) với giá trị nào của x thì : a) M = 0 , b) M < 0
a) Khi M = 0 \(\Leftrightarrow x.\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}}\)
Vậy khi x = 0 hoặc x = 3 thì M = 0
b) \(M< 0\Leftrightarrow x.\left(x-3\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x-3< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x-3>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x< 3\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x>3\end{cases}}\) (loại)
Vậy \(0< x< 3\) thì M < 0
ta có M = x.(x-3)
= \(x^2-3x\)
nếu M = 0 thì \(x^2-3x=0\)
= \(x\left(x-3\right)=0\)
= \(\orbr{\begin{cases}x=0\\x-3=0=>x=3\end{cases}}\)
nếu M < 0 thì \(x^2-3x< 0\)
= \(x\left(x-3\right)< 0\)
= \(\orbr{\begin{cases}x< 0\\x-3< 0=>x< 3\end{cases}}\)
x+m-1=m\(\sqrt[3]{2x-1}\)(x là ẩn số)
VỚI GIÁ TRỊ NÀO CỦA M THÌ PHƯƠNG TRÌNH ĐÃ CHO CÓ NGHIỆM LỚN HƠN 1???
CẢM ƠN
Với giá trị nào của m thì phương trình ẩn x:
a) x - 3 = 2m + 4 có nghiệm dương?
b) 2x - 5 = m + 8 có nghiệm âm?
c) x - 2 = 3m + 4 có nghiệm lớn hơn 3?
a) \(x-3=2m+4\)
\(\Leftrightarrow x=2m+4+3\)
\(\Leftrightarrow x=2m+7\)
Phương trình có nghiệm dương khi \(2m+7>0\Leftrightarrow m>-\dfrac{7}{2}\)
b) \(2x-5=m+8\)
\(\Leftrightarrow2x=m+8+5\)
\(\Leftrightarrow2x=m+13\)
\(\Leftrightarrow x=\dfrac{m+13}{2}\)
Phương trình có nghiệm âm khi: \(\dfrac{m+13}{2}< 0\Leftrightarrow m< -13\)
c) \(x-2=3m+4\)
\(\Leftrightarrow x=3m+4+2\)
\(\Leftrightarrow x=3m+6\)
Phương trình có nghiệm lớn hơn 3 khi: \(3m+6>3\Leftrightarrow m>-1\)
cho pt ẩn x: x\(^2\)-2(m+3)x+m\(^2\)+3=0 với giá trị nào của m thì pt có nghiệm kép? tìm nghiệm kép đó
c,
\(\Delta'=\left(m+3\right)^2-\left(m^2+3\right)\\ =m^2+6m+9-m^2-3\\ =6m+6\)
Phương trình có nghiệm kép
\(\Delta'=0\\ 6m+6=0\\ \Leftrightarrow m=-1\)
Với m = -1
\(\Rightarrow x^2-4x+4=0\\ \Leftrightarrow x=2\)
Cho biết M=x-1/3-x cới giá trị nào của x thì M có giá trị dương b) giá trị âm c) M=0