tìm số tự nhiên n sao cho : 1!+2!+3!+....+n! là số chính phương
a. tìm a là số tự nhiên để 17a+8 là số chính phương
b. tìm a là số tự nhiên để 13a+a là số chính phương
c. tìm n là số tự nhiên sao cho 3n+4 là số chính phương
d. tìm n là số tự nhiên sao cho 2n+9 là số chính phương
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
Bài 1: Tìm số tự nhiên n có 2 chữ số biết rằng 2.n+1 và 3.n+1 là các số chính phương.
Bài 2: Tìm số tự nhiên n sao cho S = 1!+2!+3!+...+ n! là số chính phương
Bài 3: Tìm số chính phương có 4 chữ số gồm cả 4 chữ số 0;2;3;5
1.Tìm số nguyên n sao cho n^2+3 là số chính phương
2.Tìm số tự nhiên n để n^2+3n+2 là số nguyên tố
3.Tìm số nguyên tố p để p+1 là số chính phương
Tìm số tự nhiên n sao cho : 1! + 2! + 3! + ........+ n! là số chính phương
đặt s(n) = 1! + 2! + ... + n!
s(1) = 1 và s(3) = 9 là số chính phương.
s(2) = 3 và s(4) = 33 không là số chính phương.
Với n ≥ 5 có n! chia hết cho 10 - do trong tích có 2 thừa số là 2 và 5 - nên n! tận cùng bằng 0
Vậy với n ≥ 5 có s(n) = s(4) + 5! + ... + n! tận cùng bằng 3. Do số chính phương không tận cùng bằng 3 (chỉ tận cùng bằng 0, 1, 4, 5, 6, 9) nên với n ≥ 5 có s(n) không là số chính phương.
Vậy chỉ với n = 1 và n = 3 tổng đã cho là số chính phương.
Nguồn: yahoo
Tìm số tự nhiên n sao cho:1!+2!+3!+....+n! là số chính phương
Tìm số tự nhiên n sao cho 1! + 2! + 3! + ... + n! là số chính phương
tìm các số tự nhiên n sao cho n(n+1)(n+2)(n+3)+2 là số chính phương
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=\left(n^2+3n\right)\left(n^2+3n+2\right)+1=\left(n^2+3n+1\right)^2\)là chính phương
mà \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+2\) cũng là chính phương
\(\Leftrightarrow\left(n^2+3n+1\right)^2=0\)
pt vô nghiệm
ta có
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+2\)
\(=\left[n\left(n+3\right)\right].\left[\left(n+1\right)\left(n+2\right)\right]+2\)
\(\left(n^2+3n\right)\left(n^2+3n+2\right)+2\)
Đặt n^2+3n+1=a
=>(a-1)(a+1)+2=a^2-1+2=a^2+1
=>Sai đề
Nếu thấy câu trả lời của mình đúng thì tick nha bạn,cảm ơn nhiều.
Tìm số tự nhiên n sao cho:1!+2!+3!+...+n! là số chính phương.
trên yahoo mình copy ra nè
đặt s(n) = 1! + 2! + ... + n!
s(1) = 1 và s(3) = 9 là số chính phương.
s(2) = 3 và s(4) = 33 không là số chính phương.
Với n ≥ 5 có n! chia hết cho 10 - do trong tích có 2 thừa số là 2 và 5 - nên n! tận cùng bằng 0
Vậy với n ≥ 5 có s(n) = s(4) + 5! + ... + n! tận cùng bằng 3. Do số chính phương không tận cùng bằng 3 (chỉ tận cùng bằng 0, 1, 4, 5, 6, 9) nên với n ≥ 5 có s(n) không là số chính phương.
Vậy chỉ với n = 1 và n = 3 tổng đã cho là số chính phương.
Mình không biết vi mình cũng đi hỏi bài này mà..sorry.
Tìm số tự nhiên n sao cho : 1!+2!+3!+...+n! là số chính phương ?
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
Xét n=1 thì 1!=1=12(thỏa mãn)
Xét n=2 thì 1!+2!=3(loại)
Xét n=3 thì 1!+2!+3!=9=32(thỏa mãn)
Xét n=4 thì 1!+........(tự làm)
Xét n>4 thì 1!+2!+3!+4!.........n!=33+....0+......0+.........=.........3(loại)
Vậy ............