Tìm các số nguyên x, y để \(\frac{x^2+y^2+1}{xy}\) có gí trị nguyên
1,Tìm các số nguyên x,y thỏa mãn \(x^2y^2-x^2-3y^2-2x-1=0\).
2,Tìm các số nguyên x,y thỏa mãn \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\) để cho tích xy đạt giá trị lớn nhất.
Cho các số nguyên x,y. Tìm giá trị nhỏ nhất của:
\(\frac{xy}{x^2+y^2}+\left(\frac{1}{x}+\frac{1}{y}\right)+\sqrt{2\left(x^2+y^2\right)}\)
1. Tìm các giá trị nguyên của n để \(\frac{2n^2+3n+3}{2n-1}\)là số nguyên
2. Tìm nghiệm nguyên của phương trình:
a. x + y = xy
b. p(x + y) = xy với p nguyên tố
c. 5xy – 2y2 – 2x2 + 2 = 0
We have equation \(x+y=xy\)
\(\Rightarrow xy-x-y=0\)
\(\Rightarrow x\left(y-1\right)-\left(y-1\right)=1\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=1=\left(-1\right).\left(-1\right)=1.1\)
So equation has two value \(\left(2;2\right),\left(0;0\right)\)
We have \(p\left(x+y\right)=xy\)
\(\Leftrightarrow xy-px-py=0\)
\(\Leftrightarrow xy-px-py+p^2=p^2\)
\(\Leftrightarrow x\left(y-p\right)-p\left(y-p\right)=p^2\)
\(\Leftrightarrow\left(x-p\right)\left(y-p\right)=p^2\)
But p is prime so \(Ư\left(p^2\right)=\left\{1;p;p^2\right\}\)
\(\Rightarrow\left(x-p\right)\left(y-p\right)=1.p^2=p.p=p^2.1=\left(-p\right).\left(-p\right)\)
\(=\left(-1\right).\left(-p^2\right)=\left(-p^2\right).\left(-1\right)\)
So equation has values \(S=\left(p+1;p^2+p\right);\left(2p;2p\right);\left(p^2+p;p+1\right);\left(0;0\right)\)
\(;\left(p-1;p-p^2\right);\left(p-p^2;p-1\right)\)
We put \(K=\frac{2n^2+3n+3}{2n-1}\)
We have \(2n^2+3n+3=\left(2n^2-n\right)+2\left(2n-1\right)+5\)
\(=n\left(2n-1\right)+2\left(2n-1\right)+5=\left(n+2\right)\left(2n-1\right)+5\)
So \(K=n+2+\frac{5}{2n-1}\)
\(K\inℤ\Leftrightarrow5⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Prints:
\(2n-1\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(n\) | \(1\) | \(0\) | \(3\) | \(-2\) |
So \(x\in\left\{1;0;3;-2\right\}\)then \(\frac{2n^2+3n+3}{2n-1}\in Z\)
1) Tìm x; y là số nguyên biết: xy + 2x - y =5 2) Cho M=\(\frac{-x+24}{x-15}\) . Tìm số nguyên x để M đạt giá trị nhỏ nhất
a) tìm các số nguyên x để : B= I x-1 I + I x-2 I đạt giá trị nhỏ nhất !
b) tìm số nguyên x,y biết : xy+3x-y =6
b,xy+3x-y=6
(xy+3x)-(y+3)=3 0,5
x(y+3)-(y+3) =3
(x-1)(y+3)=3=3.1=-3.(-1) 0,5
Có 4 trường hợp xảy ra :
; ; ;
Từ đó ta tìm được 4 cặp số x; y thoả mãn là :
(x=4;y=-2) ; (x=2;y=0) ; (x=-2;y=-4) ; (x=0; y=-6) 1.0
phần a khó quá
1. Tìm những giá trị nguyên dương của x thỏa mãn:
\(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)
2. Tìm các số nguyên x để các phân số sau có giá trị là một số nguyên và tính giá trị ấy:
\(A=\frac{x+5}{x+1}\)
3. Tìm \(x,y\in Z\), biết: ( x + 4 )( y + 3 ) = 3
1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)
\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)
\(\Rightarrow27>x>18\)
Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)
Vậy....
tìm các cặp số nguyên (x;y) thỏa mãn đẵng thức 3x2=12-/y-2/
/ / là gí trị tuyệt đối
\(\frac{\sqrt{x+4\sqrt[]{x-4}}+\sqrt{x-4\sqrt{x+4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\) rút gọn rồi tìm các gí trị nguyên của x để biểu thức nguyên
a)Tìm các số nguyên x,y biết xy-x-y=2
b)Tìm số nguyên n để phân số sau là phân số nguyên \(A=\frac{3n-9}{n-2}\) \(A=\frac{4n+1}{n-1}\)
a) Ta có : xy - x - y = 2
=> xy - x = 2 + y
=> x(y - 1) = y + 2
=> x = \(\frac{y+2}{y-1}\)
Mà x là số nguyên nên : \(\frac{y+2}{y-1}\)cũng là số nguyên
Suy ra : y + 2 chia hết cho y - 1
=> y - 1 + 3 chia hết cho y - 1
=> 3 chia hết cho y - 1
=> y - 1 thuộc Ư(3) = {-3;-1;1;3}
Ta có bảng :
y - 1 | -3 | -1 | 1 | 3 |
y | -2 | 0 | 2 | 4 |
x = \(\frac{y+2}{y-1}\) | 0 | -2 | 4 | 2 |