1,Tìm các số nguyên x,y thỏa mãn \(x^2y^2-x^2-3y^2-2x-1=0\).
2,Tìm các số nguyên x,y thỏa mãn \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\) để cho tích xy đạt giá trị lớn nhất.
Cho các số nguyên x,y. Tìm giá trị nhỏ nhất của:
\(\frac{xy}{x^2+y^2}+\left(\frac{1}{x}+\frac{1}{y}\right)+\sqrt{2\left(x^2+y^2\right)}\)
\(\frac{\sqrt{x+4\sqrt[]{x-4}}+\sqrt{x-4\sqrt{x+4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\) rút gọn rồi tìm các gí trị nguyên của x để biểu thức nguyên
Tìm tất cả các cặp số nguyên dương (x,y) sao cho \(\dfrac{x^2-2}{xy+2}\) có giá trị là số nguyên
Giúp mình với các bạn
a) Tìm các nghiệm nguyên của phương trình: \(x+xy+y=-6\)
b) Cho x,y > 0. Chứng minh rằng \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)và \(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\)
Áp dụng. Cho \(x>o,y>o\)và \(x+y=2\)
Tìm giá trị nhỏ nhất của \(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+2017\)
c)Tìm các số nguyên x,y,z thỏa mãn: \(x^2+y^2+z^2< xy+3y+2z-3\)
tìm x để b= 2 căn x / x- căn x +1 nhận gí trị nguyên
Tìm các số nguyên dương x;y để \(M=\frac{x^3+x}{xy-1}\)là số nguyên dương
1, Tìm số nguyên tố p,q để p-q và p+q là các số nguyên tố
2, Cho xy(x+y)+2 chia hết 3 .CM xy(x+y)-7 chia hết 9
Tìm các số nguyên dương x;y để biếu thức sau là số nguyên dương:
\(C=\frac{x^3+x}{xy-1}\)