Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
mi mi
Xem chi tiết
Phạm Đặng Ngọc Anh
20 tháng 12 2020 lúc 9:34

a) Xét tứ giác MNCP có

MN // CP(gt)

MP // NC(gt)

\(\Rightarrow\)Tứ giác MNCP là hình bình hành

b) Xét hình bình hành MNCP là hình thoi 

\(\Leftrightarrow\)MN=MP

\(\Leftrightarrow\)Tam giác AMN= Tam giác MBP

Xét tam giác AMN và tam giác MBP có

\(\widehat{AMN}\)\(\widehat{MBP}\)

\(\widehat{BMP}\)\(\widehat{MAN}\)

Vậy để Tam giác AMN= Tam giác MBP 

\(\Leftrightarrow\)AM=MB

Vậy khi M là trung điểm của AB thì MNCP là Hình thoi

c) Hình bình hành MNCP là Hình chữ nhật

\(\Leftrightarrow\)\(\widehat{C}\)=90 độ

\(\Leftrightarrow\)Tam giác ABC vuông tại C

Vậy khi Tam giác ABC vuông tại C thì MNCP là Hình chữ nhật

Khách vãng lai đã xóa
Dương Gia Huệ
Xem chi tiết
nguyễn quỳnh như
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 12 2022 lúc 11:30

a: Xét tứ giác AEMF co

AE//MF

ME//FA

Do đó: AEMF là hình bình hành

b: Để AEMF là hình chữ nhật thì góc BAC=90 độ

c: Khi ΔBAC vuông cân tại A thì AB=AC và góc BAC=90 độ

=>AEMF là hình vuông

Huy Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 1 2023 lúc 10:12

a: Xét tứ giác AIMK có

AI//MK

AK//MI

Do đó; AIMK là hình bình hành

b: để AIMK là hình chữ nhật thì góc A=90 độ

Hoàng Nhật Cường
Xem chi tiết
Trần thị thùy trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 12 2021 lúc 22:48

a: Xét tứ giác AEMF có 

AE//MF

ME//AF

Do đó: AEMF là hình bình hành

mà \(\widehat{FAE}=90^0\)

nên AEMF là hình chữ nhật

Pro Sơn
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 12 2021 lúc 21:06

a: \(S=\dfrac{AB\cdot AC}{2}=6\left(cm^2\right)\)

Phương Thảo Nguyễn
Xem chi tiết
Nguyễn Thuỳ Linh
Xem chi tiết
Lê Tài Bảo Châu
2 tháng 3 2020 lúc 17:17

Bài 1:

A B C D M N P Q E F

a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)

\(\Rightarrow ME\)là đường trung bình tam giác ABC

\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)

Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)

\(\Rightarrow PE\)là đường trung bình của tam giác ADC

\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)

mà \(AD=BC\left(gt\right)\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)

CMTT: \(PE=FP,FM=ME\)

\(\Rightarrow ME=EP=PF=FM\)

Xét tứ giác MEPF có:

\(ME=EP=PF=FM\left(cmt\right)\)

\(\Rightarrow MEPF\)là hình thoi ( dhnb)

 b) Vì \(MEPF\)là hình thoi (cmt)

\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc)  (4)

Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)

\(\Rightarrow MQ\)là đường trung bình của tam giác ADB

\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)

Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)

\(\Rightarrow NP\)là đường trung bình của tam giác BDC

\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)

Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)

Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)

\(\Rightarrow MQPN\)là hình bình hành (dhnb)

\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)

Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm 

c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)

\(\Rightarrow QF\)là đường trung bình của tam giác ADB

\(\Rightarrow QF//AB\left(8\right)\)

CMTT: \(FN//CD\)và \(EN//AB\)

Mà Q,F,E,N thẳng hàng 

\(\Rightarrow AB//CD\)

Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện  \(AB//CD\)


 

Khách vãng lai đã xóa
Lê Tài Bảo Châu
2 tháng 3 2020 lúc 17:18

Tối về mình làm nốt  nhé giờ mình có việc 

Khách vãng lai đã xóa
Trí Tiên亗
2 tháng 3 2020 lúc 19:07

Bài 4 :

A B C D

Để tứ giác ABCD là hình bình hành

\(\Leftrightarrow\hept{\begin{cases}\widehat{DAB}=\widehat{DCB}=120^o\\\widehat{ADC}=\widehat{ABC}\end{cases}}\)

Lại có : \(\widehat{DAB}+\widehat{DCB}+\widehat{ABC}+\widehat{ADC}=360^o\)

\(\Leftrightarrow\widehat{ABC}+\widehat{ADC}=120^o\)

\(\Leftrightarrow\widehat{ABC}=\widehat{ADC}=60^o\)

Khách vãng lai đã xóa
Đặng Phương Thảo
Xem chi tiết