giả sử p và p^2 + 2 đều là các số nguyên tố. Chứng minh p^3 + 2 cũng là 1 số nguyên tố
Giả sử p và p2+2 đều là các số nguyên tố.Chứng minh rằng p3+2 cũng là số nguyên tố
Nếu \(p\ne3\)thì \(p=3k\pm1\).
Khi đó \(p^2+2=\left(3k\pm1\right)^2+3=9k^2\pm6k+3⋮3\)mà dễ thấy \(p^2+2>3\)
do đó \(p^2+2\)không là số nguyên tố.
Suy ra \(p=3\). Khi đó \(p^3+2=29\)là số nguyên tố. (đpcm)
1. Giả sử p2 +2 đều là các số nguyên tố. Chứng minh p3+2 là số nguyên tố
2 Chứng minh 1 số có tổng các chữ số là 2018 thì số đó ko là số chính phương
Mn giúp mk vs nha
chứng minh rằng nếu p và p^2 +2 đều là các số nguyên tố thì p^3+2 cũng là các số nguyên tố
chứng minh rằng nếu p và p^2 +2 đều là các số nguyên tố thì p^3+2 cũng là các số nguyên tố
a)chứng minh rằng nếu p và p^2+8 là các số nguyên tố thì p^2+2 cũng là số nguyên tố
b)Nếu p và 8p^2+1 là các số nguyên tố thì 2p+1 cũng là số nguyên tố
Chứng minh rằng:
a) Nếu p và p^2+8 là các số nguyên tố thì p^2 +2 cũng là số nguyên tố
b) Nếu p vaf8p^2 +1 là các số nguyên tố thì 2p+1 cũng là số nguyên tố
chứng minh rằng:
a, nếu p và p^2+8 là số nguyên tố thì p^2+2 cũng là số nguyên tố
b, nếu p và 8p^2+1 là các số nguyên tố thì 2p+1 cũng là số nguyên tố
Giả sử p là số nguyên tố lớn hơn 3, sao cho 2p+1 cũng là số nguyên tố.
Chứng minh rằng 4p+1 là hợp số.
Vì 9 là SNT ( số nguyên tố ) lớn 3
=> p khi chia cho 3 có 2 dạng:
p = 3k + 1 hoặc p = 3k + 2 ( k thộc N* )
+) với: p = 3k + 1 => 2p + 1 = 2 . ( 3k + 1 ) + 1
= 6k + 2 + 1 = 6k + 3 chia hết cho 3 và lớn hơn 3
=> 2p + 1 là hợp số ( loại )
Vậy: p = 3k + 2
=> 4p + 1 = 4 . ( 3k + 2 ) + 1
= 12k + 8 + 1 = 12k + 9 chia hết cho 3 và lớn hơn 3
=> 4p + 1 là hợp số ( điều phải chứng minh )
Kết luận:
p nguyên tố > 3
=> p chia 3 dư 1,2
=> 2p + 1 chia 3 dư 0, 2
Mà 2p+1 nguên tố <=> 2p+1 chia 3 dư 2 <=> p chia 3 dư 2
=> 4p+1 = 4(3k+2) + 1 = 12k + 8 + 1 = 12k + 9 chia hết cho 3
=> 4p+1 là hợp số
Cho p là số nguyên tố lớn hơn 3 và p + 2 cũng là số nguyên tố
Cho p là số nguyên tố lớn hơn 3 và p + 2 cũng là số nguyên tố chứng minh rằng p +1 ⋮ 6.
TH1: p=3k+1
=>p+2=3k+3(loại)
=>p=3k+2 và p là số lẻ
p+1=3k+3=3(k+1) chia hết cho 3
p là số lẻ
=>p+1 chia hết cho 2
=>p+1 chia hết cho 6