cho đường thẳng (d): y=(m-1)x-2m+3
a) vẽ (d) khi m=2
b) tìm m để (d) là hàm số bậc nhất nghịch biến
c) tìm m để (d) đi qua điểm A(3;5)
d) tìm m để (d) cách gốc tọa độ 1 khoảng cách lớn nhất
cho hàm số bậc nhất y=x+m-1 có đồ thị là đường thẳng (d) . Tìm giá trị của m để khoảng cách từ gốc tọa độ tới đường thẳng (d) = căn 2
m Khác 1 ( h/s ố không qua O )
+ x =0 => y = m -1 A(0;m-1)
+y =0 => x =1-m B(1-m;0)
Áp dụng HTL trong tam gics AOB vuông tại O
\(\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\Leftrightarrow\frac{1}{\left(m-1\right)^2}+\frac{1}{\left(1-m\right)^2}=\frac{1}{\sqrt{2}^2}\)
Hay (m-1)2 =4 => /m -1/ = 2 => m =3 hoặc m =-1
cho hàm số bậc nhất y=(m-2)+m+1 có đồ thị là đường thẳng (d)
tìm m để khoảng cách gốc tọa độ O(0;0) đến (d) đạt GTLN
cho hàm số bậc nhất y=(m-2)+m+1 có đồ thị là đường thẳng (d)
tìm m để khoảng cách gốc tọa độ O(0;0) đến (d) đạt GTLN
Cho hàm số y=(2m-3)x-1 (1)
a;tìm m để khoảng cách từ gốc tọa độ đến đường thẳng (1) bằng 1/\(\dfrac{1}{\sqrt{5}}\)
b:tìm m để khoảng cách từ gốc tọa độ đến đường thẳng (1) LÀ LỚN NHẤT
Cho hàm số y = (2m - 4)x + 2 (1) (m là tham số)
a) Tìm m để hàm số (1) là hàm số bậc nhất đồng biến trên R
b) Tìm m để đường thẳng (1) cắt đường thẳng y = x + 1 tại điểm có hoành độ bằng 2
c) Xác định m sao cho khoảng cách từ gốc tọa độ đến đồ thị hàm số đã cho bằng 1
1) cho hàm số bậc nhất \(y=\left(m-2\right)x+m+3\) (d)
a) tìm m để khoảng cách từ gốc tọa độ đến đường thẳng (d) bằng 1
b) tìm m để (d) cắt Ox, Oy tạo thành tam giác có diện tích là 2
c) CMR: với mọi giá trị của m đường thẳng (d) luôn đi qua 1 điểm cố định. tìm điểm đó
giúp mk vs ah mk cần gấp
cho hàm số bậc nhất y=(m-2)+m+1 có đồ thị là đường thẳng (d)
gọi A và B theo thứ tự là giao điểm của (d) với trục hoành và trục tung. tìm m để khoảng cách gốc tọa độ O(0;0) đến (d) bằng \(\sqrt{2}\)
Sửa: \(\left(d\right):y=\left(m-2\right)x+m+1\)
PT giao (d) với Ox \(y=0\Leftrightarrow x\left(m-2\right)=-m-1\Leftrightarrow x=\dfrac{m+1}{2-m}\Leftrightarrow A\left(\dfrac{m+1}{2-m};0\right)\Leftrightarrow OA=\left|\dfrac{m+1}{2-m}\right|\)
PT giao (d) với Oy \(x=0\Leftrightarrow y=m+1\Leftrightarrow B\left(0;m+1\right)\Leftrightarrow OB=\left|m+1\right|\)
Áp dụng HTL: \(\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{1}{\left(\sqrt{2}\right)^2}=\dfrac{1}{2}\)
\(\Leftrightarrow\left|\dfrac{2-m}{m+1}\right|^2+\dfrac{1}{\left|m+1\right|^2}=\dfrac{1}{2}\\ \Leftrightarrow\dfrac{\left(2-m\right)^2}{\left(m+1\right)^2}+\dfrac{1}{\left(m+1\right)^2}=\dfrac{1}{2}\\ \Leftrightarrow2\left(2-m\right)^2+2=\left(m+1\right)^2\\ \Leftrightarrow8-8m+2m^2+2=m^2+2m+1\\ \Leftrightarrow m^2-10m+9=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-9\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}m=-1\\m=-9\end{matrix}\right.\) thỏa mãn đề bài
Giúp nhanh trong tối nay với ạ ;-;
Cho hàm số bậc nhất y = (m + 1) . x - 2 có đồ thị là đường thẳng (d). Trong đó m là tham số, m \(\neq\) -1.
a) Vẽ đồ thị hàm số và tính khoảng cách từ gốc tọa độ đến đồ thị hàm số với m = 1 (đơn vị đo trên các trục tọa độ là cm).
b) Tìm giá trị của m để đồ thị hàm số đã cho cắt đồ thị hàm số y = x - 1 tại một điểm có hoành độ là 3.
Cho hàm số bậc nhất: \(y=\left(2m-5\right)x-1\left(d\right)\)
a. tìm m để (d) cách gốc tọa độ một khoảng bằng 2
b. Chứng minh: (d) luôn đi qua một điểm (0;-1) với mọi m