cho đẳng thức a/b = c/d
chứng minh : a/a+b = c/c+d(giải bằng 2 cách )
cho bốn số a b c d(khác 0) thõa mãn:
abcd=1 và a+b+c+d=1/a+1/b+1/c+1/d
chứng minh tồn tại tích hai trong bốn số đó bằng 1
(giải hộ em với ạ. am xin cảm ơn)
cho a/b=c/d
chứng minh (a + 2c) (b+2023 d) = (a+2023 c)(b+2d)
Đặt a/b=c/d=k
=>a=bk; c=dk
(a+2c)(b+2023d)
=(bk+2dk)(b+2023d)
=k(b+2d)(b+2023d)
=(bk+2023kd)(b+2d)
=(a+2023c)(b+2d)
cho a/b=c/d
chứng minh (a + 2c) (b+2023 d) = (a+2023 c)(b+2d)
Đặt a/b=c/d=k
=>a=bk; c=dk
(a+2c)(b+2023d)
=(bk+2dk)(b+2023d)
=k(b+2d)(b+2023d)
=(bk+2023kd)(b+2d)
=(a+2023c)(b+2d)
cho a,b,c >0
CMR \(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge\frac{a^2+b^2+c^2}{2}\)
Chứng minh bằng 2 cách
C1: bất đẳng thức Cauchy
C2: Bất đẳng thức Bunhiacopxki
Áp dụng BĐT \(x^2+y^2\ge2xy\) ( với a,b,c>0) ta có:
\(\frac{a^3}{b+c}+\frac{a\left(b+c\right)}{4}=\frac{a^4}{a\left(b+c\right)}+\frac{a\left(b+c\right)}{4}\ge a^2\) (1)
CMTT ta được
\(\frac{b^3}{a+c}+\frac{b\left(a+c\right)}{4}\ge b^2\) (2)
\(\frac{c^3}{a+b}+\frac{c\left(a+b\right)}{4}\ge c^2\) (3)
Cộng lần lượt từng vế của 3 BĐT (1);(2);(3) ta được:
\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}+\frac{a\left(b+c\right)}{4}+\frac{b\left(c+a\right)}{4}+\frac{c\left(a+b\right)}{4}\ge a^2+b^2+c^2\)
\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}+\frac{2\left(ab+bc+ac\right)}{4}\ge a^2+b^2+c^2\)
\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge a^2+b^2+c^2-\frac{ab+bc+ca}{2}\) (*)
Áp dụng BĐT \(a^2+b^2+c^2\ge ab+bc+ca\)với 3 số a,b,c>0 ta được:
\(\frac{a^2+b^2+c^2}{2}\ge\frac{ab+bc+ca}{2}\)
Thay vào pt (*) ta được:
\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge a^2+b^2+c^2-\frac{a^2+b^2+c^2}{2}\)
\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge\frac{a^2+b^2+c^2}{2}\left(đpcm\right)\)
k tớ nha !!!
Cho tỉ lệ thức a/b=c/d.chứng minh a+2c/b+2d=a-c/b-d(giải bằng hai cách) cần gấp
Cách 1: Sử dụng t/c dãy tỉ số bằng nhau ta được
\(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a-c}{b-d}=\frac{a+2c}{b+2d}\)
Cách 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\left(k\inℝ\right)\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\) thay vào ta được:
\(\frac{a+2c}{b+2d}=\frac{bk+2dk}{b+2d}=\frac{k\left(b+2d\right)}{b+2d}=k\)
\(\frac{a-c}{b-d}=\frac{bk-dk}{b-d}=\frac{k\left(b-d\right)}{b-d}=k\)
=> đpcm
cách 1
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{2c}{2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\)
\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)
=> \(\frac{a+2c}{b+2d}=\frac{a-c}{b-d}\)
cách 2:
đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=b.k;c=d.k\)
\(\frac{a+2c}{b+2d}=\frac{bk+2dk}{b+2d}=\frac{k\left(b+2d\right)}{b+2d}=k\)
\(\frac{a-c}{b-d}=\frac{bk-dk}{b-d}=\frac{k\left(b-d\right)}{b-d}=k\)
=> \(\frac{a+2c}{b+2d}=\frac{a-c}{b-d}\)
Tìm hai số hữu tỉ a và b biết: a-b=a:b=2*(a+b)
Cảm ơn mn:vvv
cho 4 số tự nhiên a b c và d đều khác 0 thỏa mãn đẳng thức a mũ 2 cộng b mũ 2 bằng c mũ 2 cộng b mũ 2 chứng minh rằng a + b+c+d là 1 hợp số
Chứng minh các đẳng thức sau: (nhớ dùng các hằng đẳng thức 1,2,3,4 hoặc 5 nha)
1) a^3+b^3+c^3-abc= (a+b+c).(a^2+b^2+c^2-ab-bc-ca)
2) a(b+c)^2+b(c+a)^2+c(a+b)^2-4abc= (a+b).(b+c).(c+a)
3) Cho a+b+c=0. Chứng minh: a^3+b^3+c^3=3abc
Các bạn giải rõ cho mình tí, đừng làm tắt nhiều quá, cảm ơn. Ai nhanh tớ tích cho nha, làm từng câu cũng đc.
1) a3+b3+c3-3abc = (a+b)3-3ab(a+b)+c3-3abc
= (a+b+c)(a2+2ab+b2-ab-ac+c2) -3ab(a+b+c)
= (a+b+c)( a2+b2+c2-ab-bc-ca)
Vì a+b+c=0
=> a+b=-c
=> (a+b)3= (-c)3
=> a3+b3+3ab(a+b) = (-c)3
=> a3+b3+c3= 3abc
Cho a;b;c;d thuộc Z. Chứng minh đẳng thức sau
1) a( b+c) - b(a-c) = ( a+b) c
2)a (b - c)- a (b+d)= - a (c+d)
3) ( a+b)(c+d) - (a + d)(b+c) = (a-c( d - b)
1) a( b+c) - b(a-c) = ( a+b) c
VT = a( b+c) - b(a-c)
= ab + ac - ab + bc
= ac + bc
= c(a + b) (=VP)
2)a (b - c)- a (b+d)= - a (c+d)
VT= a (b - c)- a (b+d)
= ab - ac - ab - ad
= -ac - ad
= -a(c + d) (=VP)
chứng minh đẳng thức:
(a-b-c+d)-(-a-b+c+d) = 2(a-c)
(a - b - c + d) - (-a - b + c + d)
= a - b - c + d + a + b - c - d
= (a + a) + (b - b) - (c + c) + (d - d)
= 2a + 0 - 2c + 0
= 2a - 2c
= 2(a - c)
(a - b - c + d) - (-a - b + c + d)
= a - b - c + d + a + b - c - d
= 2a - 2c
= 2.(a - c) (đpcm)
Chúc em học tốt!!!