cho tam giác ABC ⊥ tại A có BC bằng hai lần AB . Tia phân giác góc B cắt AB tại D
a) CMR: BD =CD
b) Tính góc B và góc C của △ABC
Cho tam giác ABC có góc A=90 độ và BC bằng 2 lần AB. E là trung điểm của BC. Tia phân giác của góc B cắt AC tại D.
a) CMR: BD là tia p/g của góc ADE
b) CMR: BD=DC
c) Tính góc B và góc C của tam giác ABC
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC
1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath
Cho tam giác ABC có góc A bằng 60 độ, tia phân giác của góc B cắt AC tại M, phân giác của góc C cắt AB tại N. BM cắt CN tại I. Phân giác của góc BIC cắt BC tại D. CMR:
a, BN=BD ; b, BN+CM=BC
ưeauủnvgbhrjekdlxmjckfỉoekskãdjcfủiedskxcjfr
a.Ta có:
ˆBID=12ˆBIC=12(180o−ˆBCI−ˆIBC)=12(180o−12ˆBCA−12ˆABC)=12(180o−12(ˆBCA+ˆABC)=12(180o−12(180o−ˆBAC)=60oBID^=12BIC^=12(180o−BCI^−IBC^)=12(180o−12BCA^−12ABC^)=12(180o−12(BCA^+ABC^)=12(180o−12(180o−BAC^)=60o
Lại có :
ˆNIB=ˆIBC+ˆICB
=1/2ˆABC+1/2ˆACB
=1/2(ˆABC+ˆACB)
=1/2(180o−ˆBAC)=60o
NIB^=IBC^+ICB^
=1/2ABC^+1/2ACB^
=1/2(ABC^+ACB^
=1/2(180o−BAC^)=60o
=>ˆNIB=ˆBID
=>ΔNIB=ΔDIB(g.c.g)
=>BN=BD(cmt)
b.Chứng minh tương tự câu a
→CD=CM
→BN+CM=BD+CD=BC→đpcm
Cho tâm giác ABC vuông tại A, biết AB=3cm, BC=5cm, tia phân giác của góc ABC cắt AC tại D.
a. Tính độ dài hai đoạn thẳng AC và AD.
b. Vẽ tia Cx vuông góc tia BD tại E và tia CE cắt đường thẳng AB tại F. CMR: tam giác ABD đồng dạng tam giác EBC, rồi tính tỉ số diện tích của tam giác ABD và tam giác EBC.
c. Tia FD cắt BC tại H, kẻ đường thẳng qua H vuông góc với AB tại M. CMR: MH.AB=FH.MB
Cho tam giác ABC có góc A = 60 độ .Tia phân giác của góc B và góc C lần lượt cắt cạnh AC và AB tại D và E . CMR :
a, BC = BD + CE
b, BE cắt CD tại I . CM tam giác DIE cân
Cho tam giác ABC, AB < AC, BD là tia phân giác góc ABC ( D\(\in\)AC). Qua A kẻ đường thẳng song song với BD cắt BC tại M.
a) CMR: tam giác ABM có 2 góc bằng nhau
b) BI là tia phân giác góc ABM, CMR : BI\(\perp\)AM
c) Cho góc BAC = 60o , tia phân giác góc ABC cắt BD tại O, tia phân giác góc ngoài tại C cắt đường thẳng BI tại K, tính góc BOC và BKC?
mk đang cần gấp
a: Ta có: ˆABD=ˆBAMABD^=BAM^
ˆDBC=ˆAMBDBC^=AMB^
mà ˆABD=ˆDBCABD^=DBC^
nên ˆBAM=ˆAMB
cho △ABC có góc B=600.Hai tia phân giác của góc A và góc C cắt BC ở D, cắt AB ở E và cắt nhau tại O. Trên AC lấy K sao cho AK = AE. CMR:
a)CK = CD
b)góc OED+ODE=600
Cho tam giác ABC vuông tại A, có AB =6 BC = 10
a tính chu vi và diện tích tam giác vuông ABC
b vẽ tia phân giác của góc B , tia phân giác này cắt AC tại D . Tính tủ số DA/DC
c từ A vẽ một toa vuông góc với BD , tia này cắt BC tại I. Cm góc BID vuông
Giúp mình với ạ
a) Xét tam giác ABC vuông tại A có:
* \(BC^2=AB^2+AC^2\)(định lý Py-ta-go)
\(< =>10^2=6^2+AC^2\)
\(< =>AC^2=100-36\)
\(< =>AC=\sqrt{64}\)
\(< =>AC=8\)
Chu vi tam giác ABC là : \(AB+AC+BC=6+10+8=24\left(cm\right)\)
Diện tích tam giác ABC là: \(\frac{AB.AC}{2}=\frac{6.8}{2}=24\left(cm^2\right)\)
b) Ta có: BD là phân giác của góc B (gt)
=> \(\frac{DA}{DC}=\frac{BA}{BC}\)(tính chất đường phân giác trong 1 tam giác)
Mà \(\frac{BA}{BC}=\frac{6}{10}=\frac{3}{5}\)
=>\(\frac{DA}{DC}=\frac{3}{5}\)
c) Xét tam giác ABI có:
* BD là phân giác góc B (gt)
* BD là đường cao (AI vuông góc BD)
=> Tam gi1c ABI cân tại B
=> BA = BI (tính chất)
Xét tam giác ABD và tam giác IBD có:
*AB = IB (cmt)
*Góc ABD = Góc IBD (BD là phân giác)
*BD là cạnh chung
=> tam giác ABD = tam giác IBD (c-g-c)
=> Góc BAD = Góc BID (tính chất)
Mà góc BAD = 90 độ (tam giác ABC vuông tại A)
=> Góc BID = 90 độ
1, Cho △ABC nhọn, dựng ở phía ngoài △ABC hai tam giác vuông cân: △ABE và △ACD. CMR: EC=BD; EC⊥BD
2, Cho △ABC có góc A=60 độ. Tia phân giác của góc B cắt AC tại D, tia phân giác của góc C cắt AB tại E. các tia phân giác đó cắt nhau tại I. CM: ID=IE
CÁC BẠN GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP !!!!!!!!!!!
Cho tam giác ABC, AB < AC, BD là tia phân giác góc ABC ( D∈AC). Qua A kẻ đường thẳng song song với BD cắt BC tại M.
a) CMR: tam giác ABM có 2 góc bằng nhau
b) BI là tia phân giác góc ABM, CMR : BI⊥AM
c) Cho góc BAC = 60o , tia phân giác góc ABC cắt BD tại O, tia phân giác góc ngoài tại C cắt đường thẳng BI tại K, tính góc BOC và BKC?
trả lời đúng mình tikk
giúp tui ikkkkkk mà sao ko ai trả lời hộ tui vại
a: Ta có: \(\widehat{ABD}=\widehat{BAM}\)
\(\widehat{DBC}=\widehat{AMB}\)
mà \(\widehat{ABD}=\widehat{DBC}\)
nên \(\widehat{BAM}=\widehat{AMB}\)