Tìm tất cả cặp số nguyên x,y thỏa mãn
10x2+50y2+42xy+14x-6y+57<0
Tìm tất cả các cặp số nguyên \(\left(x;y\right)\) thỏa mãn: \(10x^2+50y+42xy+14x-6y+57< 0\)
Tìm tất cả các cặp số nguyên (x;y) thỏa mãn:
10x2+50y2+42xy+14x-6y+57<0
\(9x^2+42xy+49y^2+x^2+14x+49+y^2-6y+9-1<0\)
\(\left(3x+7y\right)^2+\left(x+7\right)^2+\left(y-3\right)^2<1\)
Vậy y=3; x=-7
Tìm tất cả các cặp số nguyên (x;y) thỏa mãn
\(10x^2+50y^2+42xy+14x-6y+57<0\)
\(VT=9x^2+2\cdot3x\cdot7y+49y^2+x^2+2\cdot x\cdot7+49+y^2-2\cdot y\cdot3+9-1.\)
\(=\left(3x+7y\right)^2+\left(x+7\right)^2+\left(y-3\right)^2-1\)
VT >= -1 với mọi x;y. Để VT <0 thì :\(\hept{\begin{cases}3x+7y=0\\x+7=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-7\\y=3\end{cases}}\)
a, Cho a,b,c là độ dài ba cạnh của một tam giác. CMR,
\(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
b, Tìm tất cả các cặp số nguyên (x;y) thỏa mãn:
\(10x^2+50y^2+42xy
+14x-6y+57< 0\)
Tìm tất cả các cặp số nguyên (x,y) thoa man :
10x2+50y2+42xy+14x-6y+57 <0
10x²+50y²+42xy+14x-6y+57<0
Ta có 10x²+50y²+42xy+14x-6y+57
= 9x²+49y²+42xy+x²+14x+49+y²-6y+9-1
= (3x+7y)²+(x+7)²+(y-3)²-1 ≥ -1 vì[(3x+7y)²+(x+7)²+(y-3)² ≥ 0 với∀x,y]
Mà x,y nguyên => 10x^2+50y^2+42xy+14x-6y+57<0
⇔ (3x+7y)²+(x+7)²+(y-3)² = 0
⇔ 3x+7y=0 (*)
(x+7)=0
(y-3)=0
⇔ x= -7
y= 3
Thay vào (*) ta có 3.(-7)+7.3=0
⇔ 0=0 (thõa mãn)
Vậy Cặp số nguyên (x;y) thõa mãn đề ra là (x;y)=(-7;3)
Tìm tất cả các cặp số nguyên (x;y) thoả mãn: 10x2 + 50y2 + 42xy + 14x - 6y + 57 < 0
10x²+50y²+42xy+14x-6y+57<0
Ta có 10x²+50y²+42xy+14x-6y+57
= 9x²+49y²+42xy+x²+14x+49+y²-6y+9-1
= (3x+7y)²+(x+7)²+(y-3)²-1 ≥ -1 vì[(3x+7y)²+(x+7)²+(y-3)² ≥ 0 với∀x,y]
Mà x,y nguyên => 10x^2+50y^2+42xy+14x-6y+57<0
⇔ (3x+7y)²+(x+7)²+(y-3)² = 0
⇔ 3x+7y=0 (*)
(x+7)=0
(y-3)=0
⇔ x= -7
y= 3
Thay vào (*) ta có 3.(-7)+7.3=0
⇔ 0=0 (thõa mãn)
Vậy Cặp số nguyên (x;y) thõa mãn đề ra là (x;y)=(-7;3)
tìm tất cả các cặp số nguyên x,y thỏa mãn
10x2+50y2+42xy-6y+57
Tìm tất cả các số nguyên dương x, y thỏa mãn phương trình
5x2+y2-4xy=6y-14x+170
Tìm tất cả các cặp số nguyên thỏa mãn
\(\left(x-2019\right)^2=y^4-6y^3+11y^2-6y\)
mình không biết là đúng không nhưng mình làm vậy này
Biến đổi vế phải ta có :
VP=y^4-6y^3+11y^2-6y=(y-1)(y-2)(y-3)=(x-2019)^2
=> y-1 ,y-2, y-3 là 3 số nguyên liên tiếp
mà tích của 3 số nguyên liên tiếp không thể là số chính phương
=>{x-2019=0
{y-1=0 hoặc y-2=0 hoặc y-3 =0
vậy ta có các cặp x,y là (2019:1) hoặc (2019:2)hoặc (2019;3)