Bài 1: Cho (P) y=ax^2 (a khác 0) và (d) y=bx+1 1)Tìm a và b để (P) và (d) cùng đi qua M (1;2) Giúp mik vs ạ
Cho (P): y = ax° + bx + c. Tìm các số a,b,c để đồ thị là một parabol thỏa:
a) Đi qua A(0;1), B(1;2), C(3;-1)
b) Đi qua ba điểm M(0;-1) và N(1;0) và P(2;3).
c) Đi qua M(1;-2), N(0;4), P(2;1)
d) Đi qua A(3;1), B(-1;2) và có hoành độ đỉnh bằng 2.
a: Vì (P) đi qua A(0;1); B(1;2); C(3;-1) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a\cdot0^2+b\cdot0+c=1\\a\cdot1^2+b\cdot1+c=2\\a\cdot3^2+b\cdot3+c=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=1\\a+b+1=2\\9a+3b+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=1\\a+b=1\\9a+3b=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=1\\9a+9b=9\\9a+3b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=1\\6b=11\\a+b=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=1\\b=\dfrac{11}{6}\\a=1-\dfrac{11}{6}=-\dfrac{5}{6}\end{matrix}\right.\)
b: Vì (P) đi qua M(0;-1); N(1;0) và P(2;3) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a\cdot0^2+b\cdot0+c=-1\\a\cdot1^2+b\cdot1+c=0\\a\cdot2^2+b\cdot2+c=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=-1\\a+b-1=0\\4a+2b-1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\a+b=1\\4a+2b=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=-1\\a+b=1\\2a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\-a=-1\\a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\a=1\\b=0\end{matrix}\right.\)
c: Vì (P) đi qua M(1;-2); N(0;4); P(2;1) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a\cdot1^2+b\cdot1+c=-2\\a\cdot0^2+b\cdot0+c=4\\a\cdot2^2+b\cdot2+c=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a+b+c=-2\\c=4\\4a+2b+c=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a+b=-2-c=-6\\4a+2b=1-4=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=4\\4a+4b=-24\\4a+2b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\2b=-21\\a+b=-6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=4\\b=-\dfrac{21}{2}\\a=-6-b=-6+\dfrac{21}{2}=\dfrac{9}{2}\end{matrix}\right.\)
d: Hoành độ đỉnh là 2 nên -b/2a=2
=>b=-4a(1)
Thay x=3 và y=1 vào (P), ta được:
\(a\cdot3^2+b\cdot3+c=1\)
=>\(9a+3b+c=1\left(2\right)\)
Thay x=-1 và y=2 vào (P), ta được:
\(a\cdot\left(-1\right)^2+b\left(-1\right)+c=2\)
=>a-b+c=2(3)
Từ (1),(2),(3), ta có hệ phương trình:
\(\left\{{}\begin{matrix}b=-4a\\9a+3b+c=1\\a-b+c=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-4a\\9a-12a+c=1\\a+4a+c=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=-4a\\-3a+c=1\\5a+c=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-4a\\-8a=-1\\5a+c=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=\dfrac{1}{8}\\b=-4\cdot\dfrac{1}{8}=-\dfrac{1}{2}\\c=2-5a=2-\dfrac{5}{8}=\dfrac{11}{8}\end{matrix}\right.\)
a) Để (P) đi qua M(-2;4) thì
Thay x=-2 và y=4 vào hàm số \(y=ax^2\), ta được:
\(a\cdot\left(-2\right)^2=4\)
\(\Leftrightarrow a\cdot4=4\)
hay a=1
Vậy: Để (P) đi qua M(-2;4) thì a=1
Cho hàm số bậc nhất y = ax + b ( a khác 0) có đồ thị là đường thẳng d . Tìm hàm số đó biết :
a, d đi qua A (1:1) , B(3:- 2)
b, d đi qua C (2:- 2) và song song với D : x -y + 1= 0
c, d đi qua M (1: 2) và cắt hai tia Ox,Oy tại P,Q sao cho DOPQ cân tại 0
d, d đi qua N (1:- 1) và vuông góc với d' : y = -x +3
a)d đi qua A(1;1)=>x=1;y=1
=> 1=a+b
d đi qua B(3;-2)=>x=3;y=-2
=>-2=3a+b
Ta có hệ phương trình: \(\hept{\begin{cases}a+b=1\\3a+b=-2\end{cases}}\)
=> a=-3/2;b=5/2
Vậy (d): y=-3/2x+5/2
b)(D): x-y+1=0 => (D): y=x+1
d đi qua C(2;-2)=>x=2;y=-2
=>-2=2a+b
vì d//D=>a=1
=>-2=2+b
=>b=-4
Vậy (d): y=x-4
c) Mình ko bt làm nha, xin bạn thông cảm!!
d) d đi qua N(1;-1)=>x=1;y=-1
=>-1=a+b
vì d vuông góc với d': y=-x+3
=>a.-1=-1
=>a=1
=>b=-1
Vậy (d): y=x-1
Bài 1 :Giả sử đường thẳng (d) có phương trình y=ax+b . Xác định a,b để (d) đi qua hai điểm A(1;3) và B(-3;-1)
Bài 2 Cho hàm số y=x+m (d). Tìm các giá trị của m để đường thẳng (d)
1, Đi qua điểm A(1;2003)
2, Song song với đường thẳng x-y+3=0
cho hàm số y = ax^2 + bx + c(a khác 0). tìm a, b, c biết hàm số đó có gtln = 5 khi x = -2 và đồ thị đi qua M(1;-1)
\(y=ax^2+bx+c\left(d\right)\)
Do y có gtln là 5 khi x=-2
\(\Rightarrow\left\{{}\begin{matrix}5=a\left(-2\right)^2+b\left(-2\right)+c\\-\dfrac{b}{2a}=-2\\a< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4a-2b+c=5\\4a-b=0\end{matrix}\right.\)
Có \(M\in\left(d\right)\Rightarrow a+b+c=-1\)
Có hệ \(\left\{{}\begin{matrix}4a-2b+c=5\\4a+b=0\\a+b+c=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{-2}{3}\\b=-\dfrac{8}{3}\\c=\dfrac{7}{3}\end{matrix}\right.\)(tm)
Vậy...
a) Tìm các giá trị của a và b để đường thẳng (d): y=ax+b đi qua hai điểm M(1;5) và N(2;8).
b) Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2x – a + 1 và parabol (P): y = \(\dfrac{1}{2}x^2\).
1.Tìm a để đường thẳng a đi qua điểm A (-1;3)
2.Tìm a để (d) cắt (P) tại hai điểm phân biệt có tọa độ (\(x_1;x_2\)) và (\(x_2;y_2\)) thỏa mãn điều kiện \(x_1x_2\left(y_1+y_2\right)+48=0\)
a: Theo đề, ta có:
\(\left\{{}\begin{matrix}a+b=5\\2a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\)
b:
1: Thay x=-1 và y=3 vào (d), ta được:
\(2\cdot\left(-1\right)-a+1=3\)
=>-a-1=3
=>-a=4
hay a=-4
Cho (P) y=ax²
(d) y=bx+a. (a là tham số)
a. Tìm giá trị của a, b để (d) và (P) cùng đi qua A(2;1)
b.Với giá trị a,b vừa tìm được. Cm (d) (P) còn có 1 nghiệm chung. Tìm tọa độ đó
Ừm,5 năm sau mình ra lời giải nha.5 năm=5 giờ
này! Tiểu thư họ Thái xinh đẹp nữ tính ơi! nói luôn là 5giờ đi còn 5năm = 5giờ nữa
cho hàm số y=ax^2 (a khác 0) (P) a) tìm hệ số a biết (p) đi qua M(-2;4) b) Viết phương trình đường thẳng d đi qua góc tọa độ tại N(2;4) c)Vẽ (P) và (d) tìm đc ở câu a b trên cùng 1 hệ trục tọa độ d)Tìm tọa độ giao điểm của (d) (P) ở câu a b
Giúp mình nhanh đi ạ làm ơn
a: Thay x=-2 và y=4 vào (P), ta được:
4a=4
hay a=1
b: Vì (d) đi qua O(0;0) và N(2;4) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a\cdot0+b=0\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=0\\a=2\end{matrix}\right.\)
cho đthẳng y=ax=b (a≠0) (d)
a) Xác định đt (d) biết (d) đi qua 2 điểm A(1;-2) và B(-2;3)
b)vẽ đt (d) tìm được ở câu a và đt (d') y=x-3 trê cùng
1 mặt phẳng tọa độ.
c) Gọi M là giao điểm của (d) và (d') tìm tọa độ giao điểm M
d)gọi P;Q lần lượt là giao điểm của (d) và (d') với trục Ox
d1) Tính góc MPQ
d2) tính chu vi và diện tích △MPQ
a, Từ giả thiết suy ra \(\left\{{}\begin{matrix}a+b=-2\\-2a+b=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-\dfrac{5}{3}\\b=-\dfrac{1}{3}\end{matrix}\right.\Rightarrow y=-\dfrac{5}{3}x-\dfrac{1}{3}\)
b,
c, Phương trình hoành độ giao điểm
\(-\dfrac{5}{3}x-\dfrac{1}{3}=x-3\Leftrightarrow x=1\Rightarrow y=-2\Rightarrow M\left(1;-2\right)\)
d1, \(tanMPQ=-\left(-\dfrac{5}{3}\right)=\dfrac{5}{3}\Rightarrow\widehat{MPQ}\approx59^o\)
d2, \(P\left(-\dfrac{1}{5};0\right);Q\left(3;0\right);M\left(1;-2\right)\)
Chu vi \(P=PQ+QM+MP=\dfrac{16}{5}+2\sqrt{2}+\dfrac{2\sqrt{34}}{5}\)
\(p=\dfrac{\dfrac{16}{5}+2\sqrt{2}+\dfrac{2\sqrt{34}}{5}}{2}\)
Diện tích \(S=\sqrt{p\left(p-\dfrac{16}{5}\right)\left(p-2\sqrt{2}\right)\left(p-\dfrac{2\sqrt{34}}{5}\right)}=...\)
Cho h/s y=ax+b(a khác 0)
a)XĐ hàm số biết đi qua nó song song y=2x-3 và đi qua A(1;-2)
b)Xét h/s biết nó đi qua 2 đ A(1;-2) và B(2;3)
c)Tìm m để đths y=(2m-3)x+2 vuông góc đths vừa tìm đc ở câu b)
a) Vì hàm số y=ax+b song song với y=2x-3 nên a=2
Vậy: y=2x+b
Thay x=1 và y=-2 vào y=2x+b, ta được:
\(2\cdot1+b=-2\)
hay b=-4
Vậy: y=2x-4
b) Vì y=ax+b đi qua A(1;-2) và B(2;3) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=-2\\2a+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a=-5\\a+b=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b+5=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=-7\end{matrix}\right.\)
Vậy: y=5x-7