CMR
\(1\times2+2\times5+3\times8+...+n\left(3n-1\right)=n^2\left(n+1\right)\)
CMR:Với mọi số tự nhiên n \(\ne\)0 ta đều có:
a.\(\frac{1}{2\times5}+\frac{1}{5\times8}+\frac{1}{8\times11}+...+\frac{1}{\left(3n-1\right)\times\left(3n+2\right)}=\frac{1}{6n+4}\)
b.\(\frac{5}{3\times7}+\frac{5}{7\times11}+\frac{5}{11\times15}+...+\frac{5}{\left(4n-1\right)\times\left(4n+3\right)}=\frac{5n}{4n+3}\)
a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\)
\(=\frac{1}{2}-\frac{1}{3n+2}=\frac{3n+2}{2\cdot\left(3n+2\right)}-\frac{2}{2\cdot\left(3n+2\right)}\)
\(=\frac{3n+2-2}{6n+4}=\frac{3n}{6n+4}=VP\)
b)\(VT=\frac{5}{3\cdot7}+\frac{5}{7\cdot11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)
\(=\frac{5}{4}\left[\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right]\)
\(=\frac{5}{4}\cdot\left[\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\right]\)
\(=\frac{5}{4}\cdot\left[\frac{1}{3}-\frac{1}{4n+3}\right]=\frac{5}{4}\cdot\left[\frac{4n+3}{3\left(4n+3\right)}-\frac{3}{3\left(4n+3\right)}\right]\)
\(=\frac{5}{4}\cdot\left[\frac{4n+3-3}{12n+9}\right]\)\(=\frac{5}{4}\cdot\frac{4n}{12n+9}=\frac{5n}{12n+9}\)
1) tính
a)\(\dfrac{27^{15}\times5^3\times8^4}{25^2\times81^{11}\times2^{11}}\)
b)\(\left(\dfrac{1}{25}-0,6\right)^2\div\dfrac{49}{125}+[\left(3\dfrac{1}{4}-6\dfrac{5}{9}\right)\times2\dfrac{2}{17}]\)
c)\(|1-\dfrac{2}{3}|-2\times\left(\dfrac{-209}{2009}\right)^0\)
a,
\(\dfrac{\left(3^3\right)^{15}.5^3.\left(2^3\right)^4}{\left(5^2\right)^2.\left(3^4\right)^{11}.2^{11}}=\dfrac{3^{45}.5^3.2^{12}}{5^4.3^{44}.2^{11}}=\dfrac{6}{5}\)
b, \(\left(-\dfrac{14}{25}\right)^2.\dfrac{125}{49}+\left(-3\dfrac{11}{36}\right).2\dfrac{2}{17}=\dfrac{4}{5}.\left(-7\right)=-\dfrac{28}{5}\)
c, \(\dfrac{1}{3}-2.1=-\dfrac{5}{3}\)
CMR
\(1\times3+2\times4+3\times5+\left(n-1\right)\left(n+1\right)=\frac{\left(n-1\right)n\left(2n+1\right)}{6}\)
Rut gon phan so sau :
a)\(\frac{9^{14\times}25^5\times8^7}{18^{12}\times625^3\times24^3}\)
b)\(\frac{1\times3\times5\times...\times39}{21\times22\times23\times...\times40}\)
c)\(\frac{1\times3\times5\times...\times\left(2n-1\right)}{\left(n+1\right)\times\left(n+2\right)\times\left(n+3\right)\times...\times2n}\)
\(\frac{9^{14}.25^5.8^7}{18^{12}.625^3.24^3}=\frac{9^{12}.9^2.25^5.8^3.8^5}{9^{12}.2^{12}.25^6.8^3.3^3} =\frac{3^4.8^5 }{8^4.3^3}=3.8=24\)
Tính C=\(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+....+\frac{1}{n\times\left(n+1\right)\times\left(n+2\right)}\)
Bạn nào giúp mik nhớ viết cả cách giải cho mik nhé!!!!!!!!!!
CMR với mọi số tự nhiên n lớn hơn hoặc bằng 1 thì:
\(\left(1+\frac{1}{1\times3}\right)\left(1+\frac{1}{2\times4}\right)\left(1+\frac{1}{3\times5}\right).......\left(1+\frac{1}{n\times\left(n+2\right)}\right)< 2\)
Bài 1: CMR
a) A = \(\frac{\left(n+1\right).\left(n+2\right)....\left(2n-1\right).\left(2n\right)}{2^n}\) là số nguyên.
b) B = \(\frac{3.\left(n+1\right).\left(n +2\right)...\left(3n-1\right).3n}{3^n}\)là số nguyên.
Cho B= \(\frac{1\times2}{1\times2\times3}+\frac{1\times2}{1\times2\times4}+\frac{1\times2}{1\times2\times3\times4}+\frac{1\times2}{1\times2\times3\times4\times5}+....+\frac{1\times2}{n,giao}\left(n\in N,n\ge3\right)\)
chứng tỏ B nhỏ hơn 3
CMR: vs mọi n thuộc Z thì
a) \(\left(n^2-3n+1\right)\left(n+2\right)-n^3+2⋮5\)
b)\(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-10\right)⋮2\)
a: \(=n^3+2n^2-3n^2-6n+n+2-n^3+2\)
\(=-n^2+5n\)
Cái này nếu n=1 thì ko thỏa mãn nha bạn
b: \(=6n^2+30n+n+5-6n^2+30n-10n+50\)
\(=49n+55\)
Nếu n là số lẻ thì 49n+55 chia hết cho 2
Còn nếu n là số chẵn thì 49n+55 ko chia hết cho 2 nha bạn