( 22 )3 =
.
3\(x\) + 22 = 46
3\(x\) = 46 - 22
3\(x\) = 24
\(x\) = 24 : 3
\(x\) = 8
3x + 22 = 46
3x = 46 - 22
3x = 24
x = 24 : 3
x = 8
Vậy x = 8
3/22 *3/11 *22=?
3/22*3/11*22=?
Tìm 2 chữ số tận cùng của S = 1^22 + 2^22 + 3^22 + ... + 2015^22
Mùa Đông ở Nam Bán Cầu nằm trong khoảng thời gian nào sau đây?
A. 21/3 - 22/6
B. 22/6 - 23/9
C. 23/9 - 22/12
D. 22/12 - 21/3
tính
Q= 3/4.7 + 3/7.10 + . . . + 3/64.67
M= 22/1.3 + 22/3.5 + . . . + 22/101.103
Các bạn giúp mk nha
\(Q=\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{64.67}\)
\(Q=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{64}-\frac{1}{67}\)
\(Q=\frac{1}{4}-\frac{1}{67}=\frac{63}{268}\)
\(M=\frac{22}{1.3}+\frac{22}{3.5}+...+\frac{22}{101.103}\)
\(M=\frac{22}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{101}-\frac{1}{103}\right)\)
\(M=11\cdot\left(1-\frac{1}{103}\right)\)
\(M=11\cdot\frac{102}{103}=\frac{1122}{103}\)
\(Q=\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{64.67}\)
\(\Leftrightarrow Q=3\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{64}-\frac{1}{67}\right)\)
\(\Leftrightarrow Q=3\left(\frac{1}{4}-\frac{1}{67}\right)\)
\(\Leftrightarrow Q=3.\frac{63}{268}\)
\(\Leftrightarrow Q=\frac{189}{268}\)
Câu b) bạn làm tương tự nhé :)
\(Q=\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{64.67}\)
\(\Leftrightarrow Q=\frac{3}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{64}-\frac{1}{67}\right)\)
\(\Leftrightarrow Q=1\left(\frac{1}{4}-\frac{1}{67}\right)\)
\(\Leftrightarrow Q=\frac{63}{268}\)
\(M=\frac{22}{1.3}+\frac{22}{3.5}+...+\frac{22}{101.103}\)
\(\Leftrightarrow M=\frac{22}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{101}-\frac{1}{103}\right)\)
\(\Leftrightarrow M=\frac{22}{2}\cdot\frac{102}{103}\)
\(\Leftrightarrow M=\frac{1122}{103}\)
5. Vào ngày nào trong năm ở hai nửa bán cầu đều nhận được một lượng ánh sáng và nhiệt như nhau? (0.5 Điểm) A. Ngày 22/6 và ngày 22/12. . B. Ngày 21/3 và ngày 23/9. C. Ngày 22/6 và ngày 22/12. D. Ngày 22/3 và ngày 22/9.
Vào ngày nào trong năm ở hai nửa bán cầu đều nhận được một lượng ánh sáng và nhiệt như nhau?
A. Ngày 22/6 và ngày 22/12.
B. Ngày 21/3 và ngày 23/9.
C. Ngày 22/6 và ngày 22/12.
D. Ngày 22/3 và ngày 22/9.
( giúp mk, mk đag thi )
Tìm 2 chữ số tận cùng của S = 1^22 + 2^22 + 3^22 + ... + 2015^22
Lời giải:
Ta có:
\(S=1^{22}+2^{22}+3^{22}+...+2015^{22}\)
\(S=2^2(2^{20}-1)+3^2(3^{20}-1)+...+2015^2(2015^{20}-1)+(1^2+2^2+...+2015^2)\)
Xét số tổng quát \(a^2(a^{20}-1)\)
Nếu $a$ chẵn thì \(a\vdots 2\Rightarrow a^2\vdots 4\Rightarrow a^2(a^{20}-1)\vdots 4\)
Nếu $a$ lẻ. Ta biết một số chính phương chia $4$ dư $0,1$. Mà $a$ lẻ nên \(a^2\equiv 1\pmod 4\)
\(\Rightarrow a^{20}\equiv 1^{10}\equiv 1\pmod 4\)
\(\Rightarrow a^2(a^{20}-1)\vdots 4\)
Vậy \(a^2(a^{20}-1)\vdots 4\) (1)
Mặt khác:
Xét $a$ chia hết cho $5$ suy ra \(a^2\vdots 25\Rightarrow a^2(a^{20}-1)\vdots 25\)
Xét $a$ không chia hết cho $5$ tức $(a,5)$ nguyên tố cùng nhau.
Áp dụng định lý Fermat nhỏ: \(a^4\equiv 1\pmod 5\)
Có \(a^{20}-1=(a^4-1)[(a^4)^4+(a^4)^3+(a^4)^2+(a^4)^1+1]\)
\(a^4\equiv 1\pmod 5\rightarrow a^4-1\equiv 0\pmod 5\)
\((a^4)^4+(a^4)^3+(a^4)^2+(a^4)^1+1\equiv 1^4+1^3+1^2+1^1+1\equiv 5\equiv 0\pmod 5\)
Do đó: \(a^{20}-1=(a^4-1)[(a^4)^4+...+1]\vdots 25\)
Vậy trong mọi TH thì \(a^2(a^{20}-1)\vdots 25\) (2)
Từ (1)(2) suy ra \(a^2(a^{20}-1)\vdots 100\)
Do đó: \(2^2(2^{20}-1)+3^2(3^{20}-1)+...+2015^2(2015^{20}-1)\vdots 100\)
Mặt khác ta có công thức sau:
\(1^2+2^2+..+n^2=\frac{n(n+1)(2n+1)}{6}\)
\(\Rightarrow 1^2+2^2+..+2015^2=\frac{2015(2015+1)(2.2015+1)}{6}\equiv 40\pmod {100}\)
Do đó S có tận cùng là 40