16(2-3x)+x^2 (3-2x)=0
BT2: Tìm x 2, 3x(x-4)+2x-8=0 3, 4x(x-3)+x^2-9=0 4, x(x-1)-x^2+3x=0 5, x(2x-1)-2x^2+5x=16
2: \(3x\left(x-4\right)+2x-8=0\)
=>\(3x\left(x-4\right)+2\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(3x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
3: 4x(x-3)+x2-9=0
=>\(4x\left(x-3\right)+\left(x+3\right)\left(x-3\right)=0\)
=>\(\left(x-3\right)\left(4x+x+3\right)=0\)
=>\(\left(x-3\right)\left(5x+3\right)=0\)
=>\(\left[{}\begin{matrix}x-3=0\\5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{5}\end{matrix}\right.\)
4: \(x\left(x-1\right)-x^2+3x=0\)
=>\(x^2-x-x^2+3x=0\)
=>2x=0
=>x=0
5: \(x\left(2x-1\right)-2x^2+5x=16\)
=>\(2x^2-x-2x^2+5x=16\)
=>4x=16
=>x=4
tim x
(2x-3)(x+1)+(2x-3)(3x-7)=0
(x-4)(3x-2)+x^2-16=0
a. \(\left(2x-3\right)\left(x+1\right)+\left(2x-3\right)\left(3x-7\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x+1+3x-7\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(4x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\4x-6=0\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{3}{2}\)
b. \(\left(x-4\right)\left(3x-2\right)+x^2-16=0\)
\(\Leftrightarrow\left(x-4\right)\left(3x-2\right)+\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(3x-2+x+4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(4x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\4x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{1}{2}\end{matrix}\right.\)
(2x-3)(x+1)+(2x+3)(3x-7)=0
<=> (2x-3)(x+1)-(2x-3)(3x-7)=0
<=> (2x-3)(x+1-3x+7)=0
<=> (2x-3)(-2x+8)=0
<=> 2x-3=0 => x=3/2
Hoặc -2x+8=0 => x= 4
Vậy x thuộc{3/2;4}
Giải phương trình
1) 16-8x=0
2) 7x+14=0
3) 5-2x=0
4) 3x-5=7
5) 8-3x=6
6) 8=11x+6
7)-9+2x=0
8) 7x+2=0
9) 5x-6=6+2x
10) 10+2x=3x-7
11) 5x-3=16-8x
12)-7-5x=8+9x
13) 18-5x=7+3x
14) 9-7x=-4x+3
15) 11-11x=21-5x
16) 2(-7+3x)=5-(x+2)
17) 5(8+3x)+2(3x-8)=0
18) 3(2x-1)-3x+1=0
19)-4(x-3)=6x+(x-3)
20)-5-(x+3)=2-5x
20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)
Vậy...
1) 16 - 8x = 0 ⇔ 8(2 - x) = 0⇔ 2 - x = 0 ⇔ x = 2
Vậy phương trình có nghiệm là x = 2
Giai phường trình sau:
a, \(3x^2+2x-1=0\) e, \(4x^2-12x+5=0\) i,\(2x^2+5x-3=0\)
b,\(x^2-5x+6=0\) f, \(2x^2+5x+3=0\) j,\(x^2+6x-16=0\)
c,\(x^2-3x+2=0\) g,\(x^2+x-2=0\)
d,\(2x^2-6x+1=0\) h, \(x^2-4x+3=0\)
a) Ta có: \(3x^2+2x-1=0\)
\(\Leftrightarrow3x^2+3x-x-1=0\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{-1;\dfrac{1}{3}\right\}\)
b) Ta có: \(x^2-5x+6=0\)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy: S={2;3}
c) Ta có: \(x^2-3x+2=0\)
\(\Leftrightarrow x^2-x-2x+2=0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy: S={1;2}
d) Ta có: \(2x^2-6x+1=0\)
\(\Leftrightarrow2\left(x^2-3x+\dfrac{1}{3}\right)=0\)
mà \(2\ne0\)
nên \(x^2-3x+\dfrac{1}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{23}{12}=0\)
\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=\dfrac{23}{12}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{\sqrt{69}}{6}\\x-\dfrac{3}{2}=\dfrac{-\sqrt{69}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9+\sqrt{69}}{6}\\x=\dfrac{9-\sqrt{69}}{6}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{9+\sqrt{69}}{6};\dfrac{9-\sqrt{69}}{6}\right\}\)
e) Ta có: \(4x^2-12x+5=0\)
\(\Leftrightarrow4x^2-10x-2x+5=0\)
\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{5}{2};\dfrac{1}{2}\right\}\)
Giải phương trình
1) 16-8x=0
2) 7x+14=0
3) 5-2x=0
4) 3x-5=7
5) 8-3x=6
6) 8=11x+6
7)-9+2x=0
8) 7x+2=0
9) 5x-6=6+2x
10) 10+2x=3x-7
11) 5x-3=16-8x
12)-7-5x=8+9x
13) 18-5x=7+3x
14) 9-7x=-4x+3
15) 11-11x=21-5x
16) 2(-7+3x)=5-(x+2)
17) 5(8+3x)+2(3x-8)=0
18) 3(2x-1)-3x+1=0
19)-4(x-3)=6x+(x-3)
20)-5-(x+3)=2-5x
Mấy cái này chuyển vế đổi dấu là xong í mà :3
1,
16-8x=0
=>16=8x
=>x=16/8=2
2,
7x+14=0
=>7x=-14
=>x=-2
3,
5-2x=0
=>5=2x
=>x=5/2
Mk làm 3 cau làm mẫu thôi
Lúc đăng đừng đăng như v :>
chi ra khỏi ngt nản
từ câu 1 đến câu 8 cs thể làm rất dễ,bn tham khảo bài của bn muwaa r làm những câu cn lại
1, 16 - 8x = 0
<=>-8x = 16
<=> x = -2
Vậy_
2, 7x + 14 = 0
<=> 7x = -14
<=> x = -2
3, 5 - 2x = 0
<=> - 2x = -5
<=> x =\(\frac{5}{2}\)
Vậy_
4, 3x - 5 = 7
<=> 3x = 7 + 5
<=> 3x = 12
<=> x = 4
Vậy...
5, 8 - 3x = 6
<=> - 3x = 6 - 8
<=> -3x = - 2
<=> x =\(\frac{2}{3}\)
Vậy......
giải hộ mk vs
1/2x^4+3x^3-x^2+3x+2=0
2/x^4-5x^3+7x^2-5x-16=0
3/(x+2)^4+(x+4)^4=16
1) \(2x^4+3x^3-x^2+3x+2=0\)
\(\Rightarrow2x^4+x^3+2x^3+x^2-2x^2-x+4x+2=0\)
\(\Rightarrow x^3\left(2x+1\right)+x^2\left(2x+1\right)-x\left(2x+1\right)+2\left(2x+1\right)=0\)
\(\Rightarrow\left(2x+1\right)\left(x^3+x^2-x+2\right)=0\)
\(\Rightarrow\left(2x+1\right)\left(x^3+2x^2-x^2-2x+x+2\right)=0\)
\(\Rightarrow\left(2x+1\right)\left[x^2\left(x+2\right)-x\left(x+2\right)+\left(x+2\right)\right]=0\)
\(\Rightarrow\left(2x+1\right)\left(x+2\right)\left(x^2-x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+2=0\\x^2-x+1=0\end{matrix}\right.\)
Ta có:
\(x^2-x+1\)
\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) với mọi x
\(\Rightarrow x^2-x+1\) vô nghiệm
\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-2\end{matrix}\right.\)
3) \(\left(x+2\right)^4+\left(x+4\right)^4=16\)
Đặt x + 3 = a, ta được
\(\left(a-1\right)^4+\left(a+1\right)^4=16\)
\(\Rightarrow\left[\left(a-1\right)^2\right]^2+\left[\left(a+1\right)^2\right]^2=16\)
\(\Rightarrow\left(a^2-2a+1\right)^2+\left(a^2+2a+1\right)^2=16\)
\(\Rightarrow a^4+4a^2+1+2a^2-4a^3-4a+a^4+4a^2+1+2a^2+4a^3+4a=16\)
\(\Rightarrow2a^4+2.4a^2+2+2.2a^2=16\)
\(\Rightarrow2a^4+8a^2+4a^2+2=16\)
\(\Rightarrow2a^4+12a^2+2-16=0\)
\(\Rightarrow2a^4+12a^2-14=0\)
\(\Rightarrow2a^4-2a^2+14a^2-14=0\)
\(\Rightarrow2a^2\left(a^2-1\right)+14\left(a^2-1\right)=0\)
\(\Rightarrow\left(a^2-1\right)\left(2a^2+14\right)=0\)
\(\Rightarrow\left(a-1\right)\left(a+1\right).2\left(a^2+7\right)=0\)
\(\Rightarrow\left(a-1\right)\left(a+1\right)\left(a^2+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a+1=0\\a^2+7=0\end{matrix}\right.\)
Vì \(a^2\ge0\) với mọi a
\(\Rightarrow a^2+7\ge7\) với mọi a
\(\Rightarrow a^2+7\) vô nghiệm
\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+3-1=0\\x+3+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)
giải phương trình sau:
a)4x-10.2x+16=0
b) (2x2-3x-1)2-3(2x2-3x-5)-16=0
a, Đặt \(2^x=t,t>0\)
Pt trở thành: \(t^2-10t+16=0\Leftrightarrow\left(t-2\right)\left(t-8\right)=0\Leftrightarrow\orbr{\begin{cases}t=2\\t=8\end{cases}\left(tm\right)}\)
Nếu t=2 => x=1
nếu t=8=> x=3
Vậy x=...
b, Đặt: \(2x^2-3x-1=t\)
pt trở thành: \(t^2-3\left(t-4\right)-16=0\Leftrightarrow t^2-3t-4=0\Leftrightarrow\left(t+1\right)\left(t-4\right)=0\Leftrightarrow\orbr{\begin{cases}t=-1\\t=4\end{cases}}\)
* Nếu t=-1 <=> \(2x^2-3x-1=-1\Leftrightarrow x\left(2x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
* Nếu t=4 <=> \(2x^2-3x-1=4\Leftrightarrow2x^2-3x-5=0\Leftrightarrow\left(x+1\right)\left(2x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{2}\end{cases}}\)
Vậy x=...
1Rút gọn biểu thức a) (3x+1)^2+(3x-1)^2-2(3x+1)(3x-1) b) 8(3^2+1)(3^4+1)...(2^16+1) c ) (2^2+1)(2^4+1)...(2^32+1) 2 Tìm x biết a) x(2x-1)-2x+1=0 b) 3x(x-1)=x-1 c) 3(x+2)-x^2-2x=0 d) x^3+x=0 3 Phân tích thành nhân tử a) 4x^3-x b) 6x^2-12xy+6y^2-24z^2
Bài 2:
a: Ta có: \(x\left(2x-1\right)-2x+1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
1) (4-3x) (10x-5)=0
2) (7-2x) (4+8x) = 0
3) (9-7x) (11-3x) = 0
4) (7-14x) (x-2) = 0
5) (2x+1) (x-3) = 0
6) (8-3x) (-3x+5) = 0
7) (16-8x) (2-6x) = 0
8) (x+4) (6x-12) = 0
9) (11-33x) (x+11) = 0
10) (x-1/4) (x+5/6) = 0
11) (7/8-2x) (3x+1/3) = 0
12) 3x - 2x^2 = 0
13) 5x + 10x^2 = 0
14) 4x + 3x^2 = 0
15) -8x^2 + x =0
16) 10x^2 - 15x = 0
17) x^2 -4 =0
18) 9 - x^2 = 0
19) x^2 -1 = 0
20) (x-3) (2x-1) = (2x-1) ( 2x+3)
21) (5+4x) (-x+2) = (5+4x) (7+5x)
22) (4+x) (x-5) = (3x-8) (x-5) = 0
23) (3x-8) (7-21x) - (9+2x) (7-21x)
24) (10+ 7x) (x+1) = (9x-2)(x-1)
25) (9x-4) (x-1/2) - (x-1/2) (6+x) = 0
26) 9x^2 - 1 = (3x-1) (x+4)
27) (x+7) (3x+1) = 49-x^2
28) (2x+1)^2 = (x-1)^2
29)x^3- 5x^2+6x = 0
30) 3x^2 + 5x + 2 = 0
Giảii giúpp mìnhh đyy mọii ngườii .
\(\left(4-3x\right)\left(10x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)
\(\left(7-2x\right)\left(4+8x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)
rồi thực hiện đến hết ...
Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>
\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)
\(2x^2-7x+3=4x^2+4x-3\)
\(2x^2-7x+3-4x^2-4x+3=0\)
\(-2x^2-11x+6=0\)
\(2x^2+11x-6=0\)
\(2x^2+12x-x-6=0\)
\(2x\left(x+6\right)-\left(x+6\right)=0\)
\(\left(x+6\right)\left(2x-1\right)=0\)
\(x+6=0\Leftrightarrow x=-6\)
\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
\(3x-2x^2=0\)
\(x\left(2x-3\right)=0\)
\(x=0\)
\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Tự lm tiếp nha
1. /3x/=12 và x2-16=0
2. (x-2)(x-3)=0 và (x-2)(x^2+3)=0
3. 2x-10=0 và x +1/x-5=1/x-5+5
4. 2x-14=0 và x^2-3x-28=0
5.(x+1)(2-3x)+x^2+2x+1=0