Những câu hỏi liên quan
Trần Nguyễn Ngọc Hưng
Xem chi tiết
Nguyễn Đăng Nhân
19 tháng 2 2022 lúc 17:24

Từ bất đẳng thức Cô si ta có:

\(4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\left[\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\right]^2\)

\(\Rightarrow\)Ta cần chứng minh:

\(\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

Vì vai trò của a, b, c trong bất đẳng thức như nhau, nên không mất tính tổng quát ta giả sử \(a\ge b\ge c\)nên bất đẳng thức cuối cùng đùng. Vậy bất đẳng thức được chứng minh.

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Minh Thư
21 tháng 2 2022 lúc 14:38

sai r bạn ơi ko biết còn đòi

Bình luận (0)
 Khách vãng lai đã xóa
Kurosaki Akatsu
Xem chi tiết
Thắng Nguyễn
25 tháng 6 2017 lúc 21:20

ko cả biết BĐT AM-GM với C-S là gì còn hỏi bài này rảnh háng

Bình luận (0)
alibaba nguyễn
26 tháng 6 2017 lúc 9:25

Đề sai rồi. Nếu như là a, b, c dương thì giá trị nhỏ nhất của nó phải là 9 mới đúng. Còn để có GTNN như trên thì điều kiện là a, b, c không âm nhé. Mà bỏ đi e thi cái gì mà phải giải câu cỡ này. Cậu này mạnh lắm đấy không phải dạng thường đâu.

Bình luận (0)
hung
Xem chi tiết
Mai Thanh Hải
3 tháng 8 2017 lúc 19:09

a)

Đặt   \(A=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(\Rightarrow A=\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\)

Áp dụng BĐT Schwarz , ta có :

\(A\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\)  (1)

Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3\left(ab+bc+ac\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

\(\Leftrightarrow\frac{\left(a+b+c\right)^2}{ab+bc+ac}\ge3\)     (2)

Từ (1) và (2) , suy ra :  \(A\ge\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

b)

\(\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge\frac{\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]^2}{a+b+c}=4\left(a+b+c\right)\)

Bình luận (0)
hung
4 tháng 8 2017 lúc 8:07

 tại sao lại dc cái này bạn

\(\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge\frac{\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]^2}{a+b+c}\)

Bình luận (0)
Mai Thanh Hải
4 tháng 8 2017 lúc 19:25

BDDT Schawars :

\(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\) ( vs a,b,x,y dương )

\(\Leftrightarrow x^2b\left(a+b\right)+y^2a\left(a+b\right)=ab\left(x+y\right)^2\)

\(\Leftrightarrow x^2ab+x^2b^2+y^2a^2+y^2ab\ge x^2ab+2abxy+y^2ab\)

\(\Leftrightarrow x^2b^2-2abxy+y^2a^2\ge0\)

\(\Leftrightarrow\left(xb-ya\right)^2\ge0\) ( Luôn đúng )

''='' khi \(xb=ya\Leftrightarrow\frac{x}{a}=\frac{y}{b}\)

Áp dụng , ta có :

\(B=\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge\frac{\left[\left(a+b\right)+\left(b+c\right)\right]^2}{a+c}+\frac{\left(c+a\right)^2}{b}\)

\(\Rightarrow B\ge\frac{\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]^2}{a+b+c}=\frac{\left[2\left(a+b+c\right)\right]^2}{a+b+c}=\frac{4\left(a+b+c\right)^2}{a+b+c}=4\left(a+b+c\right)\)

 Dấu "=" xảy ra khi \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\Rightarrow a=b=c\)

Bình luận (0)
tth_new
Xem chi tiết
tíntiếnngân
16 tháng 4 2019 lúc 10:15

\(\frac{\left(b+c\right)}{a}+\frac{\left(c+a\right)}{b}+\frac{\left(a+b\right)}{c}\)

\(=\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\)

\(=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

mà \(\frac{a}{b}+\frac{b}{a}\ge2\)(dễ chứng minh) 

chứng minh tương tự ta có

\(\frac{\left(b+c\right)}{a}+\frac{\left(c+a\right)}{b}+\frac{\left(a+b\right)}{c}\)\(\ge\)6

\(\left(\frac{\left(b+c\right)}{a}+\frac{\left(c+a\right)}{b}+\frac{\left(a+b\right)}{c}\right)^2\ge6^2=36\)(2)    (a>0; b>0; c>0)

tiếp theo chứng minh

\(36\ge4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(18\ge2\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(18a^2+18b^2+18c^2\ge2ab+2bc+2ca\)

\(16\left(a^2+b^2+c^2\right)+\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)

\(16\left(a^2+b^2+c^2\right)+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)   (bất đẳng thức luôn đúng )

suy ra  bất đẳng thức

\(36\ge4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)luôn đúng  (2)

từ (1) và (2) suy ra

\(\left(\frac{\left(b+c\right)}{a}+\frac{\left(c+a\right)}{b}+\frac{\left(a+b\right)}{c}\right)^2\ge\text{​​}\text{​​36}\ge\)\(4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

Bình luận (0)
Hoàng Diệu Linh
Xem chi tiết
Nguyễn Hoàng Bảo Nhi
11 tháng 4 2020 lúc 21:17

Ta có :  \(\left(x+y\right)^2\ge4xy\Rightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\)

\(\Rightarrow\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\)

\(\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Áp dụng ta có :

\(\frac{a}{b+c}=a.\frac{1}{b+c}\le a.\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{4}\left(\frac{a}{b}+\frac{a}{c}\right)\)

Tương tự : 

\(\frac{b}{c+a}\le\frac{1}{4}\left(\frac{b}{c}+\frac{b}{a}\right)\)

\(\frac{c}{a+b}\le\frac{1}{4}\left(\frac{c}{a}+\frac{c}{b}\right)\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\le\frac{1}{4}\left(\frac{a}{b}+\frac{a}{c}\right)+\frac{1}{4}\left(\frac{b}{c}+\frac{b}{a}\right)+\frac{1}{4}\left(\frac{c}{a}+\frac{c}{b}\right)\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\le\frac{1}{4}\left(\frac{a}{b}+\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}\right)\)

\(\Rightarrow4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\le\frac{a}{b}+\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}\)

\(\Rightarrow4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\le\frac{a+c}{b}+\frac{a+b}{c}+\frac{b+c}{a}\)

\(\Rightarrow4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\le\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

Dấu = xảy ra khi a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
✰๖ۣۜŠɦαɗøω✰
12 tháng 4 2020 lúc 15:06

Áp dụng BĐT cô si ta có : 

\(\frac{b+c}{a}\ge4.\frac{a}{b+c}\)

\(\frac{c+a}{b}\ge\frac{4b}{c+a}\)

\(\frac{a+b}{c}\ge\frac{ac}{a+b}\)

\(\Rightarrow\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\ge4.\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

Dấu " = " xảy ra khi a=  b = c

Bình luận (0)
 Khách vãng lai đã xóa
Nguyệt Băng Vãn
Xem chi tiết
Võ Thị Quỳnh Giang
15 tháng 11 2017 lúc 16:38

ta có: \(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}.\)

\(\ge3\sqrt[3]{\frac{a.b.c}{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}}=\frac{3}{\sqrt[3]{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}}\)    (vì abc=1)     (*)

Mặt khác: \(\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2\ge64abc=64=4^3\)   (vì abc=1)

=> \(\sqrt[3]{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}\ge4\)   (**)

Từ (*), (**)=> đpcm

Bình luận (0)
Phan Gia Huy
12 tháng 2 2020 lúc 16:07

Bạn dưới kia làm ngược dấu thì phải,mà bài này hình như là mũ 3

\(\frac{a^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{8}+\frac{b+1}{8}\ge3\sqrt[3]{\frac{a^3\left(a+1\right)\left(b+1\right)}{64\left(a+1\right)\left(b+1\right)}}=\frac{3a}{4}\)

Tương tự rồi cộng lại:

\(RHS+\frac{2\left(a+b+c\right)+6}{8}\ge\frac{3\left(a+b+c\right)}{4}\)

\(\Leftrightarrow RHS\ge\frac{3}{4}\) tại a=b=c=1

Bình luận (0)
 Khách vãng lai đã xóa
Kiệt Nguyễn
31 tháng 5 2020 lúc 16:55

Ta cần chứng minh \(\Sigma\frac{a}{\left(a+1\right)\left(b+1\right)}\ge\frac{3}{4}\)

\(\Leftrightarrow\Sigma\left[4a\left(c+1\right)\right]\ge3\left(a+1\right)\left(b+1\right)\left(c+1\right)\)

\(\Leftrightarrow4\Sigma ab+4\Sigma a\ge3abc+3\Sigma ab+3\Sigma a+3\)

\(\Leftrightarrow ab+bc+ca+a+b+c\ge6\)(*)

Áp dụng bất đẳng thức Cauchy cho 3 số dương ta được:

\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}=3\)\(a+b+c\ge3\sqrt[3]{abc}=3\)(Do theo giả thiết thì abc = 1)

Suy ra (*) đúng

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c = 1

Bình luận (0)
 Khách vãng lai đã xóa
Phạm Thị Thu Uyên
Xem chi tiết
Thắng Nguyễn
11 tháng 1 2018 lúc 21:59

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}\)

\(\le\sqrt{\left(a+b\right)\left(3a+b+3b+a\right)}\)

\(=\sqrt{4\left(a+b\right)^2}=2\left(a+b\right)\)

\(\Rightarrow\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\)

Bình luận (0)
KAl(SO4)2·12H2O
28 tháng 5 2018 lúc 20:31

Áp dụng Cauchy-Schwarz ta có:

\(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}=\frac{1}{2}\)

Bình luận (0)
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Inequalities
28 tháng 12 2020 lúc 20:32

Đề sai. Nếu chỗ căn vế phải mà là căn bậc 3 thì t sol cho

Bình luận (0)
 Khách vãng lai đã xóa
Kan
Xem chi tiết
KhangCVn
18 tháng 9 2021 lúc 15:23

Ta có \(a+b+c\ge3\sqrt[3]{abc}=3\)

Áp dụng bđt cosi ta có:

\(\frac{a^3}{\left(b+1\right)\left(c+2\right)}+\frac{b+1}{12}+\frac{c+2}{18}\ge3\sqrt[3]{\frac{a^3}{12.18}}=\frac{a}{2}\)

Làm tương tự

=>\(VT+\left(\frac{a+1}{12}+\frac{a+2}{18}\right)+\left(\frac{b+1}{12}+\frac{b+2}{18}\right)+\left(\frac{c+1}{12}+\frac{c+2}{18}\right)\ge\frac{a+b+c}{2}\)

=> \(VT\ge\frac{13}{36}.\left(a+b+c\right)-\frac{7}{12}\ge\frac{13}{36}.3-\frac{7}{12}=\frac{1}{2}\)(ĐPCM)

Bình luận (1)
 Khách vãng lai đã xóa