Giải pt sau: (8x+5)2(4x+3)(2x+1)=9
(8x-7)(8x-5)(2x-1)(4x-1)=9
Giải PT
Giải pt sau:
a, 3 - 4x( 25 - 2x ) - 8x2 + x - 300
b, 2( 1 -3x )/5 - 2+ 3x/10 = 7- 3( x + 1)/4
c, 5x + 2 /6 - 8x - 1/3 = 4x + 2/5 - 5
d, 3x + 2/3 - 3x + 1/6 = 2x + 5/3
Help me
a. \(3-4x\left(25-2x\right)-8x^2+x-300=0\)
\(\Leftrightarrow3-100x+8x^2-8x^2+x-300=0\)
\(\Leftrightarrow-297-99x=0\)
\(\Leftrightarrow x=3\)
Vậy \(n_0\) của PT là: x=3
b. \(\Leftrightarrow\frac{\left(2-6x\right)}{5}-2+\frac{3x}{10}=7-\frac{3x+3}{4}\)
\(\Leftrightarrow\frac{\left(4-12x\right)}{5}-\frac{20}{10}+\frac{3x}{10}=\frac{\left(28-3x-3\right)}{4}\)
\(\Leftrightarrow\frac{\left(-16-9x\right)}{10}=\frac{\left(25-3x\right)}{4}\)
\(\Leftrightarrow-64-36x=250-30x\)
\(\Leftrightarrow-6x=314\)
\(\Leftrightarrow x=-\frac{157}{3}\)
Vậy -\(n_0\) của PT là: \(x=\frac{-157}{3}\)
c. \(5x+\frac{2}{6}-8x-\frac{1}{3}=4x+\frac{2}{5}-5\)
\(\Leftrightarrow-3x=4x-\frac{23}{5}\)
\(\Leftrightarrow7x=\frac{23}{5}\)
\(\Leftrightarrow x=\frac{23}{35}\)
Vậy \(n_0\) của PT là: \(x=\frac{23}{35}\)
d. \(3x+\frac{2}{3}-3x+\frac{1}{6}=2x+\frac{5}{3}\)
\(\Leftrightarrow\frac{5}{6}=2x+\frac{5}{3}\)
\(\Leftrightarrow x=-\frac{5}{12}\)
Vậy \(n_0\) của Pt là: \(x=-\frac{5}{12}\)
giải pt: 2x(8x-1)2. (4x-1)=9
https://hoc247.net/hoi-dap/toan-8/giai-phuong-trinh-2x-8x-1-2-4x-1-9-faq441870.html
Giải pt
\(2x\left(8x-1\right)^2\left(4x-1\right)=9\)
\(\Rightarrow2x\cdot\left(64x^2-16x+1\right)\cdot\left(4x-1\right)=9\)
\(\Rightarrow\left(64x^2-16x+1\right)\cdot\left(8x^2-2x\right)=9\)
Nhân cả hai vế của phương trình với 8 ta được:
\(\left(64x^2-16x+1\right)\cdot\left(64x^2-16x\right)=72\)
Đặt \(a=64x^2-16x\left(a\ge1\right)\) (1)
\(\Rightarrow\left(a+1\right)\cdot a=72\)
\(\Rightarrow a^2+a-72=0\)
\(\Rightarrow\left(a-8\right)\cdot\left(a+9\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=8\left(tmđk\right)\\a=-9\left(loại\right)\end{matrix}\right.\)
Thay vào (1) ta đc:
\(64x^2-16x=8\Rightarrow64x^2-16x-8=0\)
\(\Rightarrow\left(2x-1\right)\left(4x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
giải pt
(8x+5)2.(4x+3)(2x+1)
giải pt\(\sqrt{16-8x+x^2}=4-x\)
\(\sqrt{4x^2-12x+9}=2x-3\)
\(1.\sqrt{16-8x+x^2}=4-x\)
\(\sqrt{\left(4-x\right)^2}=4-x\)
\(4-x-4+x=0\)
= 0 phương trình vô nghiệm.
\(2.\sqrt{4x^2-12x+9}=2x-3\)
\(\)\(\sqrt{\left(2x-3\right)^2}=2x-3\)
\(2x-3-2x+3=0\)
= 0 phương trình vô nghiệm.
a: Ta có: \(\sqrt{16-8x+x^2}=4-x\)
\(\Leftrightarrow\left|4-x\right|=4-x\)
hay \(x\le4\)
b: Ta có: \(\sqrt{4x^2-12x+9}=2x-3\)
\(\Leftrightarrow\left|2x-3\right|=2x-3\)
hay \(x\ge\dfrac{3}{2}\)
a/ \(\sqrt{16-8x+x^2}=4-x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le4\\\sqrt{\left(4-x\right)^2}=4-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le4\\\left|4-x\right|=4-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\le4\\\left[{}\begin{matrix}4-x=4-x\left(loại\right)\\4-x=x-4\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x=4\)
Vậy...
b/ \(\sqrt{4x^2-12x+9}=2x-3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\sqrt{\left(2x-3\right)^2}=2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\left[{}\begin{matrix}2x-3=2x-3\left(loại\right)\\2x-3=3-2x\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{3}{2}\)
Vậy...
Giải PT
3. a. \(x^2-10x-39=0\)
c. \(\frac{x^2}{x^3-9}=\frac{1}{x+3}\)
d. \(\frac{x-1}{2x^2-4x}-\frac{7}{8x}=\frac{5-x}{4x^2-8x}-\frac{1}{8x-16}\)
\(a,x^2-10x-39=0\)
\(\Leftrightarrow x^2-10x-39+64=64\)
\(\Leftrightarrow x^2-10x+25=64\)
\(\Leftrightarrow\left(x-5\right)^2=64\)
làm nốt
\(x^2-10x-39=0\Leftrightarrow x^2-13x+3x-39=0\Leftrightarrow x\left(x-13\right)+3\left(x-13\right)=0\)
\(\Leftrightarrow\left(x-13\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=13\\x=-3\end{cases}}\)
\(b,\frac{x^2}{x^3-9}=\frac{1}{x+3}\)
\(\Leftrightarrow x^2\left(x+3\right)=x^3-9\)
\(\Leftrightarrow x^3+3x^2=x^3-9\)
\(\Leftrightarrow3x^2=-9\left(VL\right)\)
\(\dfrac{8x^2}{3\left(1-4x^2\right)}=\dfrac{2x}{6x-3}-\dfrac{1+8x}{4+8x}\) giải pt
\(\dfrac{8x^2}{3\left(1-4x^2\right)}=\dfrac{2x}{6x-3}-\dfrac{1+8x}{4+8x}\)
\(\Leftrightarrow\dfrac{8x^2}{3\left(1-2x\right)\left(1+2x\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{1+8x}{4\left(1+2x\right)}\)
\(\Leftrightarrow\dfrac{-32x^2}{12\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x.4\left(1+2x\right)-\left(1+8x\right).3\left(2x-1\right)}{12\left(2x-1\right)\left(2x+1\right)}\)
\(\Leftrightarrow8x\left(1+2x\right)-\left(1+8x\right).3.\left(2x-1\right)=-32x^2\)
\(\Leftrightarrow8x+16x^2-6x+3-48x^2+24x+32x^2=0\)
\(\Leftrightarrow26x+3=0\)
\(\Leftrightarrow x=-\dfrac{3}{26}\)
Vậy:......
A.Giải pt sau:4x(x+2)=4x mũ2 - 24
B.giải bpt sau:x-2 phần3 < 8x - 5 phần 9
C.giải pt sau:3/x - 2 + 2/x+2= 2x+ 5/x mũ2-4
Bài làm:
a) \(4x\left(x+2\right)=4x^2-24\)
\(\Leftrightarrow4x^2+8x=4x^2-24\)
\(\Leftrightarrow8x=-24\)
\(\Leftrightarrow x=-3\)
Vậy tập nghiệm của phương trình \(S=\left\{-3\right\}\)
b) \(\frac{x-2}{3}< \frac{8x-5}{9}\)
\(\Leftrightarrow\frac{3\left(x-2\right)}{9}< \frac{8x-5}{9}\)
\(\Leftrightarrow3x-6< 8x-5\)
\(\Leftrightarrow-5x< 1\)
\(\Leftrightarrow x>-\frac{1}{5}\)
Vậy \(x>-\frac{1}{5}\)
c) đkxđ: \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\\x^2-4\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}}\)
Ta có: \(\frac{3}{x-2}+\frac{2}{x+2}=\frac{2x+5}{x^2-4}\)
\(\Leftrightarrow\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2x+5}{\left(x-2\right)\left(x+2\right)}\)
\(\Rightarrow3\left(x+2\right)+2\left(x-2\right)=2x+5\)
\(\Leftrightarrow3x+6+2x-4=2x+5\)
\(\Leftrightarrow3x=3\)
\(\Leftrightarrow x=1\left(tm\right)\)
Vậy tập nghiệm của phương trình \(S=\left\{1\right\}\)
Học tốt!!!!