cho tam giac ABC vuong taiA , cạnh BC cố định và AH vuông góc với BC tại H vẽ về phía ngoài tam giác ABC hai hình vuông ABDE và ACFG. Gọi M,N là chân các đường vuông góc kẻ từ D và F đến BC. Chứng minh DM+FN=BC
Cho tam giác ABC vuông ở A, AH là đường cao. Vẽ về phía ngoài tam giác ABC hai hình vuông ABDE và ACFG. Gọi M và N lần lượt là chân các đường vuông góc hạ từ D và F đến BC. CMR: Đường thẳng AH đi qua trung điểm của đoạn EG
bạn tự vẽ hình nhé
CM tam giác ABC= tam giác AEG
\(\Rightarrow\)góc GEA= góc ABC
góc EGA = góc ACB
ta có góc HAC= góc ABH ( cùng phụ goc BAH)
góc OAE= góc HAC
\(\Rightarrow\) góc OEA= góc OAE
\(\Rightarrow\)OA=OE
CMTT: OA=OG
suy ra OE=OG (1)
ta có góc GAC+ HAC+BAH=180độ
mà BAH=OAG
 \(\Rightarrow\) OAG+GAC+HAC=180 độ
O,A ,H thẳng hàng(2)
từ 1 va 2 suy ra đfcm
O là trung điểm EG
cho tam giác ABC vuông và AH là đường cao ứng với cạnh huyền . Vẽ về phía ngoại tam giác hai hình vuông ABDE và ACFG
a) gọi M,N là chân các đường vuông góc hạ từ D và F đến BC. Chứng minh DM+FN=BC
b) cm 3 điểm D,A,F thằng hàng
c) cm rằng AH đi qua trung điểm của đoạn thẳng EG
các bạn làm ơn giúp mình vs mình đang cần gấp ạ !!!
Bài 2: Cho tam giác BAC có ba góc nhọn. Vẽ về phía ngoài tam giac ABC các tam giác ABD và ACE vuông tại A sao cho AB = AD, AC = AE. Kẻ AH vuông góc với BC tại H. Gọi M, N thứ tự là chân đường vuông góc kẻ từ D và E đến AH.
a. C/m tam giác ABH bằng tam giác DAM
b. C/m AM + AN = BC
c. C/m AH đi qua trung điểm của DE
cho tam giác ABC nhọn. về phía ngoài tam giác ABC vẽ hình vuông ABDE và hình vuông ACFG. vẽ AH vuông góc với BC, EI vuông góc với AH tại I, GJ vuông góc với AH tại J.
a) CM tam giác ABH = tam giác EAI
b)CM AK là trung tuyến tam giác AEG(AH cắt EG tại K)
c)L là điểm thuộc AK sao cho K là trung điểm của AL. CM AL = BC
d) CM tam giác ABL=tam giác BDC
e)CM CD là đường cao của tam giác BCL
mọi người giúp mình câu e với!!!
Cho tam giác nhọn ABC. Về phía ngoài △ABC, vẽ các tam giác vuông cân tại A là tam giác ABD và tam giác ACE. Kẻ AH vuông góc với BC (H ∈ BC). Gọi I là giao điểm H A và DE.
a) Kẻ DN và EM vuông góc với H A (N, M ∈ H A). Chứng minh rằng DN = AH, EM = AH.
b) Chứng minh rằng DI = IE.
a/
Ta có
\(DN\perp HA\left(gt\right);BC\perp HA\left(gt\right)\) => DN//BC
\(\Rightarrow\widehat{NDB}+\widehat{CBD}=180^o\) (Hai góc trong cùng phía bù nhau)
\(\Rightarrow\widehat{NDA}+\widehat{ADB}+\widehat{ABD}+\widehat{ABC}=180^o\)
Ta có
tg ABD vuông cân tại A \(\Rightarrow\widehat{ADB}=\widehat{ABD}=45^o\Rightarrow\widehat{ADB}+\widehat{ABD}=90^o\)
\(\Rightarrow\widehat{NDA}+\widehat{ABC}=180^o-90^o=90^o\)
Xét tg vuông ABH
\(\widehat{BAH}+\widehat{ABC}=90^o\)
\(\Rightarrow\widehat{NDA}=\widehat{BAH}\)
Xét tg vuông NDA và tg vuông BAH có
\(\widehat{NDA}=\widehat{BAH}\left(cmt\right)\)
AD=AB (cạnh bên tg cân)
=> tg NDA = tg BAH (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)
=> DN = AH
C/m tương tự ta cũng có tg vuông MAE = tg vuông CHA => EM=AH
b/
Ta có
\(DN\perp HA\left(gt\right);EM\perp HA\left(gt\right)\) => DN//EM
Xét tg vuông DIN và tg vuông EIM có
DN=EM (cùng bằng AH)
\(\widehat{IDN}=\widehat{IEM}\) (góc so le trong)
=> tg DIN = tg EIM (Hai tg vuông có 1 cạnh góc vuông và góc nhọn tương ứng bằng nhau)
=> DI=IE
Cho tam giác ABC nhọn, về phía ngoài vẽ các hình vuông: ABDE, ACFG. Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm A' sao cho M là trung điểm của AA'.
a) Chứng minh AA'=EG
b) AM cắt EG tại N. Chứng minh NA vuông góc với GE
c) Từ G và E kẻ các đường thẳng // với AE và AG. Chúng cắt nhau tại I. Vẽ đường cao AH của tam giác ABC.
Chứng minh: I,A,H thẳng hàng
Chứng mminh CI=BF
d) Chứng minh CD,BF,AH đồng quy
Cho tam giác ABC nhọn; vẽ về phía ngoài tam giác ABC các tam giác vuông cân tại A là tam giác ABD và tam giác ACE
a, Chứng minh DC = BE và DC vuông góc với BE
b, Gọi H là chân đường vuông góc kẻ từ A đến ED và M là trung điểm của đoạn thẳng BC. Chứng minh A, M, H thẳng hàng
BÀI 1:
Chứng minh rằng nếu hai cạnh bên của một hình thang cắt nhau thì đường thẳng đi qua giao điểm đó và giao điểm 2 đường chéo sẽ đi qua trung điểm các đáy của hình thang.
BÀI 2:
Tam giác ABC có BC= 2AB và góc ABC=120 độ. Chứng minh rằng đường trung tuyến BM vuông góc AB
BÀI 3:
Cho tam giác ABC vuông tại A. về phía ngoài tam giác lấy AB và BC làm cạnh, dựng các hình vuông ABDE và BCFG. Chứng minh GA vuông góc CD
BÀI 4:
Trên 2 cạnh AB và AC của tam giác ABC ta dựng ra phía ngoài của tam giác các hình vuông ABDE và ACFG ; dựng hình bình hành AEHG. Gọi K là giao điểm của AD và BE . Chứng minh CK vuông góc KH
BÀI 1:
Chứng minh rằng nếu hai cạnh bên của một hình thang cắt nhau thì đường thẳng đi qua giao điểm đó và giao điểm 2 đường chéo sẽ đi qua trung điểm các đáy của hình thang.
BÀI 2:
Tam giác ABC có BC= 2AB và góc ABC=120 độ. Chứng minh rằng đường trung tuyến BM vuông góc AB
BÀI 3:
Cho tam giác ABC vuông tại A. về phía ngoài tam giác lấy AB và BC làm cạnh, dựng các hình vuông ABDE và BCFG. Chứng minh GA vuông góc CD
BÀI 4:
Trên 2 cạnh AB và AC của tam giác ABC ta dựng ra phía ngoài của tam giác các hình vuông ABDE và ACFG ; dựng hình bình hành AEHG. Gọi K là giao điểm của AD và BE . Chứng minh CK vuông góc KH