Cho tam giac ABC can tai A, co AC= can2 cm, BC=2cm. Tinh so do cac goc tam giac ABC
cho tam giac ABC can tai A co goc B=2A. phan giac B cat AC tai D
a, tinh so do cac goc cua tam giac ABC
b, CM: DA=DB
c, CM: DH=BC
cho tam giac ABC co goc A = 120 độ ; AB = 7.15 cm; AC = 14,3cm. Duong phan giac cua goc A cat BC tai D.
a)tinh do dai doan thang AD
b) tinh ti so dien tich cac tam giac ABD va ABC
c) tinh dien tich tam giac ABD
cho tam giac abc vuong tai a, co ab=3 cm ac=4 cm, duong phan giac ad. duong vuong goc voi dc cat ac tai e
a) cmr tam giac abc va tam giac dec dong dang
b) tinh do dai cac doan thang bc,bd
c) tinh do dai ad
d) tinh dien tich tam giac abc va dien tich tu giac abde
Cho tam giac ABC can tai A co AD la duong trung tuyen
a)Chung minh tam giac ABD= tam gaic ACD va AD vuong goc voi BC
b)Cho AB=10cm,BC=16cm. Tinh do dai AD va so sanh cac goc cua tam giac ABC.
c) Ve duong trung tuyen CF cua tam giac ABC cat AD tai M. Tinh do dai AM.
d) Ve DH vuong goc AC tai H, tren canh AC va canh DC lan luot lay hai diem E,K sao cho AE=AD va DK=DH. Chung minh: EK vuong goc voi BC
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
Cho tam giac ABC vuong tai A ,,co AC la 2cm ,BC 15cm,AB 3cm ( tinh goc alpha )viet ti so luong giac cua goc alphal (lam tron den do)
Cho tam giac ABC can tai A co goc B=2A.ve phan giac BD a)tinh cac goc tam giac ABC b)chung minh:DA=BC
cho tam giac abc can tai a co goc bac =50do tren tia doi cua tia bc lay diem d tren tia doi cua tia cb lay diem e sao cho bd =ba ce=ca tinh goc dae
cho tam giac abc deu ve ben ngoai tam giac cac tam giac abd vuong can tai b tam giac ace vuong can tai c tinh so goc nhon cua ade
XÉT \(\Delta ABC\)CÂN TẠI A
\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)
TA CÓ \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(Đ/L\right)\)
THAY\(50^0+\widehat{B}+\widehat{C}=180^o\)
\(\widehat{B}+\widehat{C}=130^o\)
MÀ\(\widehat{B}=\widehat{C}\)
\(\Rightarrow\widehat{B}=\widehat{C}=\frac{130^o}{2}=65^o\)
TA CÓ \(\widehat{DBA}+\widehat{ABC}=180^o\left(KB\right)\)
\(\Rightarrow\widehat{DBA}=180^o-65^o=115^o\)
TA CÓ\(\widehat{ACE}+\widehat{ACB}=180^o\left(KB\right)\)
\(\Rightarrow\widehat{ACE}=180^o-65^0=115^o\)
XÉT \(\Delta ACE\)CÓ AC=CE (GT) =>\(\Delta ACE\)CÂN TẠI C
\(\Rightarrow\widehat{CAE}=\widehat{AEC}=\frac{180^o-115^0}{2}=32,5^0\)
XÉT \(\Delta ABD\)CÓ AB=BD (GT) =>\(\Delta ABD\)CÂN TẠI B
\(\Rightarrow\widehat{DAB}=\widehat{ADB}=\frac{180^o-115^0}{2}=32,5^0\)
TA CÓ\(\widehat{DAB}+\widehat{BAC}+\widehat{EAC}=\widehat{DAE}\)
THAY\(32,5^o+50^0+32,5^0=\widehat{DAE}\)
\(\Rightarrow\widehat{DAE}=115^0\)
cau 1 cho tam giac can abc co ab=ac=17 va bc=30 ve ra ngoai tam giac abc tam giac bcd voi cbd=90 do va cd song song voi ab tinh do dai bd
cau 2 cho tam giac abc co goc b =70 do goc c =40 do cac duong cao bd va ce cat nhau tai h goi i la trung diem cua ah m la giao cua tia phan giac goc eid voi bc tinh goc imd
Bai 1: Cho tam giac ABC vuong can tai A. Ve phia ngoai tam giac ABC, ve tam giac BCD vuong can tai B. Tu giac ABCD la hinh gi ? Vi sao?
Bai 2: Hinh thang vuong ABCD co goc A= goc D=90 do, AB=AD=2cm, DC= 4cm. Tinh cac goc cua hinh thang
Giup minh vs! Excuse me! Thank you rat nhieu !^^