Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
.........
Xem chi tiết
Phạm Thị Ngọc Mai
Xem chi tiết
Bảo Trần
Xem chi tiết
HT.Phong (9A5)
21 tháng 7 2023 lúc 9:01

\(P=\left(x^2+4x+1\right)^2-12\left(x+2\right)^2+2093\)

\(P=\left(x^2+4x+1\right)^2-12\left(x^2+4x+1\right)+2093\)

\(P=\left(x^2+4x+1\right)^2-12\left(x^2+4x+1+3\right)+2093\)

Đặt: \(a=x^2+4x+1\)

\(\Rightarrow P=a^2-12\left(a+3\right)+2093\)

\(P=a^2-12a-36+2093\)

\(P=a^2-12a+2057\)

\(P=a^2-12a+36+2021\)

\(P=\left(a^2-2\cdot6\cdot a+6^2\right)+2021\)

\(P=\left(a-6\right)^2+2021\)

Ta có: \(\left(a-6\right)^2\ge0\forall a\)

\(\Rightarrow P=\left(t-6\right)^2+2021\ge2021\)

\(\Rightarrow P\ge2021\Rightarrow P_{min}=2021\)

Dấu "=" xảy ra: \(\left(t-6\right)^2=0\Leftrightarrow t-6=0\Leftrightarrow t=6\)

Vậy: \(P_{min}=2021\) khi \(t=6\)

Mà: \(t=6\Rightarrow x^2+4x+1=6\)

\(\Leftrightarrow x^2+4x+1-6=0\)

\(\Leftrightarrow x^2+4x-5=0\)

\(\Leftrightarrow x^2-x+5x-5=0\)

\(\Leftrightarrow x\left(x-1\right)+5\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)

Vậy: \(P_{min}=2021\) khi \(\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)

Gia Huy
21 tháng 7 2023 lúc 8:57

\(P=\left(x^2+4x+1\right)^2-12\left(x+2\right)^2+2093\\ P=\left(x^2+4x+1\right)^2-12\left(x^2+4x+4\right)+2093\\ P=\left(x^2+4x+1\right)^2-2\left(x^2+4x+1\right).6-36+2093\\ P=\left(x^2+4x+1\right)^2-2\left(x^2+4x+1\right).6+36+2021\\ P=\left(x^2+4x-5\right)^2+2021\ge2021\)

Dấu "=" xảy ra tương đương với \(\left\{{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)

Đức Anh Vũ
Xem chi tiết
Hoàng Miêu
Xem chi tiết
sakura haruko
Xem chi tiết
Hồ Quang Phước
Xem chi tiết
Ngô Tấn Đạt
2 tháng 1 2018 lúc 19:17

\(A=-\dfrac{4}{x^2-4x+10}\\ =-\dfrac{4}{\left(x^2-2.x.2+4+6\right)}\\ =-\dfrac{4}{\left(x-2\right)^2+6}\)

\(\left(x-2\right)^2\ge0\\ \Rightarrow\left(x-2\right)^2+6\ge6\\ \Rightarrow\dfrac{4}{\left(x-2\right)^2+6}\le\dfrac{2}{3}\\ \Rightarrow A=-\dfrac{4}{\left(x-2\right)^2+6}\ge-\dfrac{2}{3}\)

Min A=-2/3 khi x=2

Nguyễn Thị Ngọc Thơ
3 tháng 1 2018 lúc 9:07

\(C=\dfrac{2}{x^2+4x+5}=\dfrac{2}{\left(x+2\right)^2+1}\)

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1\)

\(\Rightarrow C\le2\)

Dấu ''='' xảy ra \(\Leftrightarrow x=-2\)

Vậy Min C = 2 kjhi x = -2

Thỏ Nghịch Ngợm
Xem chi tiết
Thịnh Gia Vân
6 tháng 1 2021 lúc 21:19

a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)

\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)

\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)

Vậy MaxQ=10 khi x=2, y=-2

b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)

\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)

Vậy MaxA=14 khi x=-3

+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)

\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)

\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)

Vậy MaxB=5 khi x=-1/2, y=1/3

c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)

Vậy MinP=2 khi x=1, y=-3

Nguyễn Văn Nam
Xem chi tiết
sakura haruko
Xem chi tiết