cho a2-4a+1=0. tính giá trị của bt P=\(\frac{a^4+a^2+1}{a^2}\)
Bik \(a^2-a-1=0\). Tính giá trị BT Q=\(a^4-3a^3+4a^2-a+2\)
\(Q=a^4-3a^3+4a^2-a+2\)
\(=a^4-2a^3+a^2-a^3+a^2+a+2a^2-2a-2+4\)
\(=\left(a^2-a\right)^2-a\left(a^2-a-1\right)+2\left(a^2-a-1\right)+4\)
\(=1^2-0+0+4=5\)
Chúc bạn học tốt.
a,Chứng minh bđt:
1,(a-1)(a-3)(a-4)(a-6)+9 ≥ 0
2,a2/b+c-a+b2/c+a-b+c2/a+b-c ≥ a+b+c (a,b,c là độ dài 3 cạnh tam giác)
b,Cho a2-4a+1=0.Tính giá trị của biểu thức A=a4+a2+1/a2
c,Cho a,b,c thỏa mãn 1/a+1/b+1/c=1/a+b+c.Tính giá trị của biểu thức M=(a5+b5)(b7+c7)(c2013+a2013)
1: (a-1)(a-3)(a-4)(a-6)+9
=(a^2-7a+6)(a^2-7a+12)+9
=(a^2-7a)^2+18(a^2-7a)+81
=(a^2-7a+9)^2>=0
b: \(A=\dfrac{a^4-4a^3+a^2+4a^3-16a+4+16a-3}{a^2}=\dfrac{16a-3}{a^2}\)
a^2-4a+1=0
=>a=2+căn 3 hoặc a=2-căn 3
=>A=11-4căn 3 hoặc a=11+4căn 3
Cho biểu thức: \(M=\left(\frac{\left(a-1\right)^2}{31+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right):\frac{a^3+4a}{4a^2}\)
a) Rút gọn M
b) Tìm a để M > 0
c) Tìm giá trị của a để biểu thức M đạt giá trị lớn nhất. Tìm giá trị nhỏ nhất đó
\(\text{cho a^2 - 4a +1 = 0 Tính giá trị của biểu thức P=a^4+a^2+1/a^2}\)
\(P=\frac{a^4+a^2+1}{a^2}\)
\(=a^2-4a+1=\left(a-2\right)^2-3=\left(a-3\right)^2-\left(\sqrt{3}\right)^2=0\)
Áp dụng Hằng Đẳng Thức, ta có: \(a^2-b^2=0\)
cho a>0 thỏa mãn \(4a^2+\sqrt{2}a-\sqrt{2}=\)0 tính giá trị biểu thức
P\(=\frac{a+1}{\sqrt{\left(a^4+a+1\right)}-a^2}\)
Ta có \(\left(\sqrt{a^4+a+1}-a^2\right)\left(\sqrt{a^4+a+1}+a^2\right)=a^4+a+1-a^4=a+1\) nên
\(P=\sqrt{a^4+a+1}+a^2\)
Từ giả thiết \(4a^2+\sqrt{2}a-\sqrt{2}=0\) suy ra \(a^2=\frac{-\sqrt{2}}{4}\left(a-1\right)\), do đó \(a^4=\frac{1}{8}\left(a^2-2a+1\right)\) và
\(a^4+a+1=\frac{1}{8}\left(a^2-2a+1\right)+a+1=\frac{\left(a+3\right)^2}{8}\).
Lại do giả thiết \(a>0\) suy ra \(\sqrt{a^4+a+1}=\sqrt{\frac{\left(a+3\right)^2}{8}}=\frac{a+3}{2\sqrt{2}}\).
Từ đó \(P=\sqrt{a^4+a+1}+a^2=\frac{a+3}{2\sqrt{2}}+\frac{-\sqrt{2}\left(a-1\right)}{4}=\frac{\sqrt{2}\left(a+3\right)-\sqrt{2}\left(a-1\right)}{4}=\sqrt{2}\)
Cho \(a=\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{\sqrt{2}}{8}\) .Chứng minh rằng \(4a^2+\sqrt{2}a-\sqrt{2}=0\) và tính giá trị của biểu thức:
\(B=a^2+\sqrt{a^4+a+1}\)
CM: \(a=\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{\sqrt{2}}{8}\Rightarrow a+\frac{\sqrt{2}}{8}=\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}\)
\(\Leftrightarrow\left(a+\frac{\sqrt{2}}{8}\right)^2=\left(\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}\right)^2\)\(\Leftrightarrow a^2+\frac{a\sqrt{2}}{4}+\frac{1}{32}=\frac{1}{4}\left(\sqrt{2}+\frac{1}{8}\right)\Leftrightarrow a^2+\frac{2\sqrt{a}}{4}+\frac{1}{32}=\frac{\sqrt{2}}{4}+\frac{1}{32}\)
\(\Leftrightarrow4a^2+\sqrt{2}a-\sqrt{2}=0\)
Theo trên: \(4a^2+\sqrt{2}a-\sqrt{2}=0\Rightarrow a^2=\frac{\sqrt{2}\left(1-a\right)}{4}\Rightarrow a^4=\frac{a^2-2a+1}{8}\)
\(\Rightarrow a^4+a+1=\frac{a^2-2a+1}{8}+a+1=\left(\frac{a+3}{2\sqrt{2}}\right)^2\)
\(B=a^2+\sqrt{a^4+a+1}=a^2+\frac{a+3}{2\sqrt{2}}=\frac{2\sqrt{2}a^2+a+3}{2\sqrt{2}}\)\(=\frac{4a^2+\sqrt{2}a+3\sqrt{2}}{4}=\frac{4\sqrt{2}}{4}=\sqrt{2}\)
cho bt B= \(\frac{5}{x-3}-\frac{x-2}{x^2-9}+\frac{x-1}{2x+6}\)
a, rút gọn
b, tính giá trị của bt b biết giá trị tuyệt đối x-2=1
c, tìm x để b<0
cho bt: \(A=\frac{1}{2\sqrt{2}-2}-\frac{1}{2\sqrt{2}+2}+\frac{\sqrt{a}}{1-a}\)
a, rút gọn bt
b, tính giá trị A biết a=4/9
c, tìm a để |A| = 1/2
Bạn ơi, mk làm câu a), các câu sau bạn tự làm dc k ???
Cho a=\(\frac{1}{2}\)\(\sqrt{\sqrt{2}+\frac{1}{8}}\)-\(\frac{\sqrt{2}}{8}\)4a
Tính giá trị của biểu thức S=\(a^2\)+\(\sqrt{a^4+a+1}\). Câu trên đã cm đc 4a2+ căn 2 a- căn 2 =0 rồi.
Cíu mk vs:'<. k8 phải học lớp 9 T.T