Chứng tỏ rằng nếu \(\frac{a}{b}0,d>0\right)\) thì \(\frac{a}{b}
Cho hai số hữu tỉ \(\frac{a}{b}và\frac{c}{d}\left(b>0,d>0\right)\)chứng tỏ rằng
a)Nếu \(\frac{a}{b}< \frac{c}{d}\)thì ad <bc
b)Nếu ad < bc thì \(\frac{a}{b}< \frac{c}{d}\)
a) \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\) (quy đồng mẫu chung)
Vì b,d > 0 nên bd > 0. Do đó ad < bc (đpcm)
b) ad < bc \(\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\) (cùng chia cho bd)
Vì b,d > 0 nên bd > 0. Do đó \(\frac{a}{b}< \frac{c}{d}\) (rút gọn tử và mẫu)
a, Ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{cb}{db}\Rightarrow ad< cb\)
b, Ta có: \(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow\frac{a}{b}< \frac{c}{d}\)
Chứng minh rằng nếu \(\frac{a}{b}< \frac{c}{d}\left(b>0,d>0\right)\)thì\(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
\(\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow ad< bc\)
\(\Rightarrow ab+ad< bc+ab\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)( 1 )
Lại có : ad < bc
\(\Rightarrow ad+cd< bc+cd\)
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Cho hai số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)(b > 0, d > 0). Chứng tỏ rằng:
a) Nếu \(\frac{a}{b}< \frac{c}{d}\)thì ad < bc;
b) Nếu ad < bc thì \(\frac{a}{b}< \frac{c}{d}\)
a. Nếu : \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}\times bd< \frac{c}{d}\times bd\left(\text{ do }bd>0\right)\)
\(\Leftrightarrow ad< bc\) vậy ta có điều phải chứng minh
b. nếu \(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Leftrightarrow\frac{a}{b}< \frac{c}{d}\) vậy ta có đpcm
Zúp mình
Cho hai số hữu tỉ \(\frac{a}{b}và\frac{c}{d}\)(b>0, d>0). Chứng Tỏ rằng
a) Nếu \(\frac{a}{b}< \frac{c}{d}thì\)ab < bc
b) Nếu ad < bc thì \(\frac{a}{b}< \frac{c}{d}\)
bn vào câu hỏi tương tự
có người làm câu này rồi
a) chứng tỏ rằng nếu \(\frac{a}{b}<\frac{c}{d}\left(b>0,d>0\right)\)thì \(\frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d}\)
b)Hãy viết 3 số hữu tỉ xen giữa \(\frac{-1}{3}và\frac{-1}{4}\)
a) Ta có : a/b < c/d => ad<bc
Ta ab vào hai vế,ta được:
ad+ab < bc+ab => a(b+d) < b(a+c) => \(\frac{a}{b}\frac{a+c}{b+d}\) (2)
Từ (1) và (2),suy ra : ab < a+c/b+d < c/d
b)Ba số hữu tỉ xen giữa -1/3 và -1/4 là : -15/48 ; -14/48 và -13/48
cho 2 số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)(b>0,d>0) . chứng tỏ rằng:
a) Nếu \(\frac{a}{b}< \frac{c}{d}\)thì ad< bc ;
b) Nếu ad<bc thì \(\frac{a}{b}< \frac{c}{d}\)
\(a,\frac{a}{b}< \frac{c}{d}=>\frac{ad}{bd}< \frac{bc}{bd}=>ad< bc\left(đpcm\right)\)
\(b,ad< bc=>\frac{ad}{bd}< \frac{bc}{bd}=>\frac{a}{b}< \frac{c}{d}\left(đpcm\right)\)
a) Chứng tỏ rằng nếu \(\frac{a}{b}0,d>0\right)\)thì \(\frac{a}{b}
a) Ta có a / b < c / d khi ad < bc (1)
Thêm ab vào 2 vế của (1), ta có: ad+ab <bc+ab
a(b+d) < b(a+c) suy ra a / b<(a+c) / (b+c) (2)
Thêm cd vào 2 vế của (1), ta có: ad +cd<bc+cd
d(a+c) <c(b+d) suy ra (a+c) / (b+d)<c / d (3)
Từ (2) và (3) suy ra: a / b < (a+c) / (b+d) < c / d
Chứng tỏ rằng nếu \(\frac{a}{b}\)<\(\frac{c}{d}\)(b>0,d>0)thì \(\frac{a}{b}\)<\(\frac{a+c}{b+d}\)<\(\frac{c}{d}\)
Chứng minh rằng : nếu\(\frac{a}{b}< \frac{c}{d}\left(b,d>0\right)\)thì \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
+) \(ad+ab< bc+ab\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)( 1 )
+) \(ad+cd< bc+cd\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\)
Vì \(b,d>0\Rightarrow bd>0\)
\(\Rightarrow ad< bc\)
Ta lại có:
\(\frac{a}{b}=\frac{a\left(b+d\right)}{b\left(b+d\right)}=\frac{ab+ad}{b\left(b+d\right)}\)
\(\frac{a+c}{b+d}=\frac{b\left(a+c\right)}{b\left(b+d\right)}=\frac{ab+bc}{b\left(b+d\right)}\)
Vì \(b,d>0\)
Nên \(b\left(b+d\right)>0\)và \(d\left(b+d\right)>0\) \(\left(1\right)\)
Mà \(ad< bc\Leftrightarrow ab+ad< ab+bc\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)ta có: \(\frac{ab+ad}{b\left(b+d\right)}>\frac{ab+bc}{b\left(b+d\right)}\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(\cdot\right)\)
Ta lại có:
\(\frac{a+c}{b+d}=\frac{d\left(a+c\right)}{d\left(b+d\right)}=\frac{ad+cd}{d\left(b+d\right)}\)
\(\frac{c}{d}=\frac{c\left(b+d\right)}{d\left(b+d\right)}=\frac{bc+cd}{d\left(b+d\right)}\)
Mà \(ad< bc\Rightarrow ad+cd< bc+cd\left(3\right)\)
Từ \(\left(1\right)\)và \(\left(3\right)\)ta có:
\(\frac{ad+cd}{d\left(b+d\right)}< \frac{bc+cd}{d\left(b+d\right)}\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(\cdot\cdot\right)\)
Từ \(\left(\cdot\right)\)và \(\left(\cdot\cdot\right)\)ta có: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)