a/b<c/d
=>ad<bc
=>ad+ab<bc+ab
<=>a(b+d)<b(a+c)
=>a/b<a+c/b+d(1)
từ ad<bc
=>ad+cd<bc+cd
=>d(a+c)<c(b+d)
=>a+c/b+d<c/d (2)
từ 1 và 2 =>đpcm
a/b<c/d
=>ad<bc
=>ad+ab<bc+ab
<=>a(b+d)<b(a+c)
=>a/b<a+c/b+d(1)
từ ad<bc
=>ad+cd<bc+cd
=>d(a+c)<c(b+d)
=>a+c/b+d<c/d (2)
từ 1 và 2 =>đpcm
Chứng minh rằng nếu \(\frac{a}{b}< \frac{c}{d}\left(b>0,d>0\right)\)thì\(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Cho hai số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)(b > 0, d > 0). Chứng tỏ rằng:
a) Nếu \(\frac{a}{b}< \frac{c}{d}\)thì ad < bc;
b) Nếu ad < bc thì \(\frac{a}{b}< \frac{c}{d}\)
a) chứng tỏ rằng nếu \(\frac{a}{b}<\frac{c}{d}\left(b>0,d>0\right)\)thì \(\frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d}\)
b)Hãy viết 3 số hữu tỉ xen giữa \(\frac{-1}{3}và\frac{-1}{4}\)
cho 2 số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)(b>0,d>0) . chứng tỏ rằng:
a) Nếu \(\frac{a}{b}< \frac{c}{d}\)thì ad< bc ;
b) Nếu ad<bc thì \(\frac{a}{b}< \frac{c}{d}\)
a) Chứng tỏ rằng nếu \(\frac{a}{b}0,d>0\right)\)thì \(\frac{a}{b}
Chứng minh rằng : nếu\(\frac{a}{b}< \frac{c}{d}\left(b,d>0\right)\)thì \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Cho hai số hữu tỉ\(\frac{a}{b}\) và\(\frac{c}{d}\)(b>0,d>0). Chứng tỏ rằng:
a) Nếu \(\frac{a}{b}\)<\(\frac{c}{d}\) thì ad<bc;
b)Nếu ad<bc thì \(\frac{a}{b}\)<\(\frac{c}{d}\)
Cho hai số hữu tỉ \(\frac{a}{b}\)và \(\frac{c}{d}\)(b > 0, d > 0). Chứng tỏ rằng:
a) Nếu \(\frac{a}{b}\)< \(\frac{c}{d}\)thì ad < bc;
b) Nếu ad < bc thì \(\frac{a}{b}\)< \(\frac{c}{d}\)
cho 2 số hữu tỉ \(\frac{a}{b}\) và \(\frac{c}{d}\)(b>0,d>0).Chứng tỏ rằng:
a)Nếu \(\frac{a}{b}