Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Ngọc Huyền
Xem chi tiết
Đoàn Hà
13 tháng 5 2018 lúc 19:48

rgebdrwrybwrybery

Siêu Nhân Lê
Xem chi tiết
Nguyễn Thị Anh
16 tháng 10 2016 lúc 16:31

sử dụng đồng dư thức hoặc hằng đẳng thức

Vũ Đình Thành
Xem chi tiết
Vũ Yến Minh
9 tháng 4 2023 lúc 17:53

+) Gọi A là tổng của dãy số: 1+ 2 + 3 + 4 + ... + 2016 + 2017 + 2018.
+) Số số hạng của A là:
A = (2018 - 1) : 1 + 1 = 2018.
+) Tổng A là: (2018 + 1). 2018 : 1 = 4074342.
Vậy, A = 4074342 (hay 1+ 2 + 3 + 4 + ... + 2016 + 2017 + 2018 = 4074342). 

Vũ Đình Thành
9 tháng 4 2023 lúc 17:57

Ah bạn à chia 2 mà ._. Nhưng mà cảm ơn

Vũ Đình Thành
9 tháng 4 2023 lúc 18:02

+) Gọi A là tổng của dãy số: 1+ 2 + 3 + 4 + ... + 2016 + 2017 + 2018.

+) Số số hạng của A là:

A = (2018 - 1) : 1 + 1 = 2018.

+) Tổng A là: (2018 + 1). 2018 : 2= 2037171

Vậy, A = 4074342 (hay 1+ 2 + 3 + 4 + ... + 2016 + 2017 + 2018 = 2037171). 

Dat Doi
Xem chi tiết
oOo Tôi oOo
18 tháng 4 2016 lúc 15:58

999 - 888 - 111 + 111 - 111 + 111 - 111

= 111 - 111 + 111 - 111 + 111 - 111

= 0 + 111 - 111 + 111 - 111

= 111 - 111 + 111 - 111

= 0 + 111 - 111

= 111 - 111

= 0

DORAEBIN
Xem chi tiết
diep do
Xem chi tiết
Phan Tùng Dương
17 tháng 4 2018 lúc 18:31

/ là j zậy

diep do
17 tháng 4 2018 lúc 18:41
Máy cái /là mình ghi phần đó bạn vì mình không biét ghi phần như thế nào
Thị Hồng Nguyễn
Xem chi tiết
Siêu Nhân Lê
Xem chi tiết
Bùi Thị Vân
17 tháng 10 2016 lúc 8:33

Cô sẽ áp dụng đồng dư để chứng minh, Tuấn có thể trình bày cách của em để mọi người tìm hiểu.
\(Q=\frac{\left(2016+1\right)2016}{2}=2017.3^2.2^4.7\).
ÁP dụng định lý Fermat nhỏ: \(a^{p-1}=1\left(modp\right)\). Nhận xét rằng 2017 là số nguyên tố vì vậy
\(\left(n,2017\right)=1,\)với mọi n  = 1, 2, ..., 2016.
Do đó \(n^{2016}=1\left(mod2017\right),n=1,....,2016\).
Vì vậy: \(n^{2017}=n\left(mod2017\right),n=1,2,...,2017\).
Suy ra: \(1^{2017}+2^{2017}+.....+2016^{2017}=1+2+...+2016\left(mod2017\right)\)
                                                                        \(=2017.1008\left(mod2017\right)\)\(=0\left(mod2017\right)\)
Vì vậy \(1^{2016}+2^{2016}+....+2016^{2016}=0\left(mod2017\right)\).
Ta sẽ chứng minh P chia hết cho \(2^4\) .
Nhận xét rằng \(n=2k\left(k\in N\right),n=\left(2k\right)^{2017}=0\left(mod2^4\right)\).
Xét những hạng tử không chia hết cho 2 là 1, 3, 5, ....., 2015.
Áp dụng định lý Euler : \(a^{\varphi\left(n\right)}=1\left(modn\right),\left(a,n\right)=1\).
Do n = 1, 3, 5, ...., 2015 thì \(\left(n,2^4\right)=1\)( Ước chung lớn nhất bằng 1) , \(\varphi\left(16\right)=8\) nên :
\(n^{2017}=n^{8.252+1}=n\left(n^8\right)^{252}=n\left(mod2^4\right)\)( Do \(n^8=1\left(mod2^4\right)\).
Vì vậy : \(1^{2017}+3^{2017}+...+2015^{2017}=1+3+...2015\left(mod2^4\right)\)
                                                                       \(=2016.504\left(mod2^4\right)\)
                                                                        \(=0\left(mod2^4\right)\).
Vì vậy \(1^{2017}+2^{2017}+.....+2016^{2017}=0\left(mod2^4\right)\)
Những số còn lại là \(3^2,7\)ta chứng minh tương tự.
 

Tuấn
16 tháng 10 2016 lúc 22:25

\(a^n+b^n\) chia hết cho a+b với n lẻ 
áp dụng cái trên là đc nhé bạn 

Nguyễn Ngọc Hải Dương
17 tháng 10 2016 lúc 11:19

mik mới học lớp 7

Hoàng Giang
Xem chi tiết
Thái Phú Khang
Xem chi tiết
vương gia kiệt
10 tháng 5 2016 lúc 20:54

M=1

k cho minh nhe

vũ duy bình
10 tháng 5 2016 lúc 20:56

2016!