phân tích đa thức thành nhân tử 4x^2 +12xy^2 +6x^3y
Ét ô ét
Phân tích đa thức thành đa nhân tử :
\(12x-9-4x^2\)
\(x^3-6x^2y=12xy^2-8y^3\)
\(12x-9-4x^2=-\left(2x-3\right)^2\\ Sửa:x^3-6x^2y+12xy^2-8y^3=\left(x-2y\right)^3\)
phân tích đa thức thành nhân tử
6x+3y-4x^2+y^2
Phân tích đa thức thành nhân tử:
4x^2 - y^2 - 6x + 3y
\(4x^2-y^2-6x+3y\)
\(=\left(2x\right)^2-y^2-3\left(2x-y\right)\)
\(=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)\)
\(=\left(2x-y\right)\left(2x+y-3\right)\)
Phân tích đa thức thành nhân tử :
\(4x^2-y^2-6x+3y\)
\(=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)\)
\(=\left(2x-y\right)\left(2x+y+3\right)\)
mk xl nhé, mk ghi sai dấu
Sửa lại phần cuối :
\(\left(2x-y\right)\left(2x+y-3\right)\)
Phân tích đa thức sau thành nhân tử 4x2 - 6x - 3y
6x^3y^2-4x^3y^3. Phân tính đa thức thành nhân tử
Phân tích đa thức thành nhân tử: (12x^2-12xy+3y^2)-10(2x-y)+8
(12x^2 - 12xy + 3y^2) - 10.(2x - y) + 8
= 3(4x^2 - 4xy + y^2) - 10(2x - y) + 8
= 3(2x - y)^2 - 10(2x - y) + 8
= 3(2x - y)^2 - 10(2x - y) + 8
= 3(2x - y)^2 - 6(2x - y) - 4(2x - y) + 8
= 3(2x - y)(2x - y - 2) - 4(2x - y -2)
= (2x - y -2)[3(2x - y) - 4]
= (2x - y -2)(6x - 3y -4)
Ai k mk mk k lại
(12x^2 - 12xy + 3y^2) - 10.(2x - y) + 8
= 3(4x^2 - 4xy + y^2) - 10(2x - y) + 8
= 3(2x - y)^2 - 10(2x - y) + 8
= 3(2x - y)^2 - 10(2x - y) + 8
= 3(2x - y)^2 - 6(2x - y) - 4(2x - y) + 8
= 3(2x - y)(2x - y - 2) - 4(2x - y -2)
= (2x - y -2)[3(2x - y) - 4]
= (2x - y -2)(6x - 3y -4)
Phân tích đa thức thành nhân tử A. 4x^2-12xy+9y^2-8x+12y B. 3x^2+20x-7 C. (3x-1)^4+2(9y^2-6x+1)+1 D. 2x^3-3x^2+2x-1
a: =(2x-3y)^2-4(2x-3y)
=(2x-3y)(2x-3y-4)
b: =3x^2+21x-x-7
=(x+7)(3x-1)
c: =(3x-1)^4+2(3x-1)^2+1
=[(3x-1)^2+1]^2
d: =2x^3-2x^2-x^2+x+x-1
=(x-1)(2x^2-x+1)
Phân tích đa thức sau thành nhân tử a) -16a^4b^6 - 24a^5b^5 - 9a^6b^4
b) x^3 - 6x^2y + 12xy^2 - 8x^3
c) x^3 + 3/2x^2 + 3/4x + 1/8
Lời giải:
a.
\(-16a^4b^6-24a^5b^5-9a^6b^4=-[(4a^2b^3)^2+2.(4a^2b^3).(3a^3b^2)+(3a^3b^2)^2]\)
\(=-(4a^2b^3+3a^3b^2)^2=-[a^2b^2(4b+3a)]^2\)
\(=-a^4b^4(3a+4b)^2\)
b.
$x^3-6x^2y+12xy^2-8x^3$
$=x^3-3.x^2.2y+3.x(2y)^2-(2y)^3=(x-2y)^3$
c.
$x^3+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}$
$=x^3+3.x^2.\frac{1}{2}+3.x.\frac{1}{2^2}+(\frac{1}{2})^3$
$=(x+\frac{1}{2})^3$
a) Ta có: \(-16a^4b^6-24a^5b^5-9a^6b^4\)
\(=-a^4b^4\left(16b^2+24ab+9a^2\right)\)
\(=-a^4b^4\cdot\left(4b+3a\right)^2\)
b) Ta có: \(x^3-6x^2y+12xy^2-8y^3\)
\(=x^3-3\cdot x^2\cdot2y+3\cdot x\cdot\left(2y\right)^2-\left(2y\right)^3\)
\(=\left(x-2y\right)^3\)
c) Ta có: \(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}\)
\(=x^3+3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3\)
\(=\left(x+\dfrac{1}{2}\right)^3\)
Phân tích đa thức thành nhân tử
a) (4x^2 - 3x - 18)^2 - (4x^2 + 3x)^2
b) 9(x + y - 1)^2 - 4(2x + 3y +1)^2
c) -4x^2 + 12xy - 9y^2 + 25
d) x^2 - 2xy + y^2 - 4m^2 + 4mn - n^2
a) Ta có: \(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2\)
\(=\left(4x^2-3x-18-4x^2-3x\right)\left(4x^2-3x-18+4x^2+3x\right)\)
\(=\left(-6x-18\right)\left(8x^2-18\right)\)
\(=-6\left(x+3\right)\cdot2\left(4x^2-9\right)\)
\(=-12\left(x+3\right)\left(2x-3\right)\left(2x+3\right)\)
b) Ta có: \(9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)
\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)
\(=\left(3x+3y-3-4x-6y-2\right)\left(3x+3y-3+4x+6y+2\right)\)
\(=-\left(x+3y+5\right)\left(7x+9y-1\right)\)
c) Ta có: \(-4x^2+12xy-9y^2+25\)
\(=-\left(4x^2-12xy+9y^2-25\right)\)
\(=-\left[\left(2x-3y\right)^2-25\right]\)
\(=-\left(2x-3y-5\right)\left(2x-3y+5\right)\)
d) Ta có: \(x^2-2xy+y^2-4m^2+4mn-n^2\)
\(=\left(x^2-2xy+y^2\right)-\left(4m^2-4mn+n^2\right)\)
\(=\left(x-y\right)^2-\left(2m-n\right)^2\)
\(=\left(x-y-2m+n\right)\left(x-y+2m-n\right)\)
a) (4x2-3x-18)2-(4x2+3x)2
=(4x2-3x-18-4x2-3x)(4x2-3x-18+4x2+3x)
=(-6x-18)(8x2-18)
=-48x3+108x-144x2+324
Bài 2. Phân tích các đa thức sau thành nhân tử: 3x^3+6x^2+3x-12xy^2
3x3 + 6x2 + 3x - 12xy2
= 3x(x2 + 2x + 1 - 4y2)
= 3x[(x + 1)2 - (2y)2]
= 3x(x + 1 + 2y)(x - 2y + 1)
\(3x^3+6x^2+3x-12xy^2\)
\(=3x\left(x^2+2x+1-4y^2\right)\)
\(=3x\left[\left(x+1\right)^2-\left(2y\right)^2\right]\)
\(=3x\left(x+1-2y\right)\left(x+1+2y\right)\)