tìm các số nguyên dương thỏa mãn a3+3a2+5=5b và a+3=5c
Tìm các số nguyên dương a;b;c thỏa mãn : a3+3 =a2+5=5b và a+3=5c.
Cho a và là 2 số nguyên dương thỏa mãn các tính chất sau:
a. (a+1) chia hết cho b
b. a=2b+5
c. a+7b là số nguyên tô
Hãy tìm a và b
Lời giải:
a+1\vdots b$
$\Rightarrow 2b+5+1\vdots b$
$\Rightarrow 2b+6\vdots b$
$\Rightarrow 6\vdots b\Rightarrow b\in \left\{1; 2; 3; 6\right\}$
Nếu $b=1$ thì $a=7$. Khi đó $a+7b=14$ không là snt (loại)
Nếu $b=2$ thì $a=9$. Khi đó $a+7b = 23$ là snt (thỏa mãn)
Nếu $b=3$ thì $a=11$. Khi đó $a+7b=32$ không là snt (loại)
Nếu $b=6$ thì $a=17$. Khi đó $a+7b = 59$ là snt (thỏa mãn)
Vậy.........
Tìm 3 số nguyên a.b.c thỏa mãn: a+b=-3;b+c=-5c+a=10
1)Tìm chữ số ab để số 2345ab chia hết cho 72
2)Tìm các số nguyên dương thỏa mãn a-b= a:b
Gọi T là tập hợp các số phức z thỏa mãn z - i ≥ 3 và z - 1 ≤ 5 . Gọi z 1 ; z 2 ∈ T lần lượt là các số phức có môdun nhỏ nhất và lớn nhất. Tìm số phức z 1 + 2 z 2
A. 12 + 2 i
B. - 2 + 12 i
C. 6 - 4 i
D. 12 + 4 i
Tìm các số a, b, c biết 2a = 3b, 5b = 7c và 3a – 7b + 5c = -
30.
Tìm các số x, y, z biết x : y : z = 3 : 4 : 5 và 2𝑥^2 + 2𝑦^2 -
3𝑧^2 = -100.
\(2a=3b\Rightarrow\dfrac{a}{3}=\dfrac{b}{2}\Rightarrow\dfrac{a}{21}=\dfrac{b}{14}\\ 5b=7c\Rightarrow\dfrac{b}{7}=\dfrac{c}{5}\Rightarrow\dfrac{b}{14}=\dfrac{c}{10}\\ \Rightarrow\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}=\dfrac{3a}{63}=\dfrac{7b}{98}=\dfrac{5c}{50}=\dfrac{3a-7b+5c}{63-98+50}=\dfrac{-30}{15}=-2\\ \Rightarrow\left\{{}\begin{matrix}a=-42\\b=-28\\c=-20\end{matrix}\right.\)
\(x:y:z=3:4:5\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\Rightarrow x=3k;y=4k;z=5k\)
\(2x^2+2y^2-3z^2=-100\\ \Rightarrow18k^2+32k^2-75k^2=-100\\ \Rightarrow-25k^2=-100\Rightarrow k^2=4\Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=6;y=8;z=10\\x=-6;y=-8;z=-10\end{matrix}\right.\)
\(2a=3b\text{⇒}a=\dfrac{3b}{2}\) , \(5b=7c\text{⇒}c=\dfrac{5c}{7}\)
\(3a-7b+5c\) \(=-30\)
⇔ \(3.\dfrac{3b}{2}-7b+5.\dfrac{5b}{7}=-30\)
⇔\(63b-98b+50b=-420\)
⇔\(b=-28\) ⇒\(\left\{{}\begin{matrix}a=-42\\c=-20\end{matrix}\right.\)
Tìm dạng chung của các số tự nhiên a chia cho 4 dư 3 , chia cho 5 dư 4 , chia cho 6 dư 5 và a chia hết cho 13. Từ đó hãy tìm số a nhỏ nhất thỏa mãn bài toán
Các bạn giúp mik bài này vs nhé ! Cảm ơn cacban nhiều ! Yêu thương! <3
1) Cho a,b,c là các số nguyên dương thỏa mãn : a^2 + b^2 = c^2
CMR : ab chia hết cho cả a+b+c và a+b-c
2) Cho p là số nguyên tồ lớn hơn 3
CMR : p^2 -2017 chia hết cho 24
3)Tìm x,y,z thỏa mãn :
\(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}=3\)
Tìm phân số a/b thỏa mãn các điều kiện:4/9<a/b<10/21 và 5a-2b=3