11 mũ 85+119 mũ 19 + 2000 mũ 95 chia hết cho 2
a) A=19 mũ 2005+ 11 mũ 2004 chia hết cho 10
b)B= 2 + 2 mũ 2 + 2 mũ 3 +..... + 2 mũ 60 chia hết cho 3 ; 7 ; 15
giúp mk với
b: \(B=2\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=3\cdot\left(2+...+2^{59}\right)⋮3\)
\(B=2+2^2+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
Chứng minh rằng
a) 19 mũ 2005 + 11 mũ 2004 chia hết cho 10
b) 19 mũ 2011 + 11 mũ 2010+ 20 mũ 11 chia hết cho 10
c)9 mũ 2n + 2009 chia hết cho 10
a,19^2005+ 11^2004 =19^4.501.19
=x1.x9
=x9
11^2004=11^4.501
=x1
x1+x9= y0
suy ra điều cần phải chứng minh
tương tự 2 câu còn lại
chứng tỏ rằng:
8 mũ 5+ 2 mũ 11 chia hết cho 17
69 mũ 2 - 69.5 chia hết cho 32
8 mũ 7 - 2 mũ 19 chia hết cho 14
8 mũ 5 + 2 mũ 11 = 2 mũ 3 tất cả mũ 5 + 2 mũ 11
= 2 mũ 15 + 2 mũ 11
= 2 mũ 11(2 mũ 4 + 1)
= 2 mũ 11 * 17
cm : D = 11 mũ 2009 + 11 mũ 2008 +....+ 11 mũ 2000 chia hết cho 5
D = 112009 + 112008 + ... + 112000 ( Có 10 SH )
Thấy mỗi số hạng của D có dạng 11n ( n = 2000; 2001;..;2009 ) đều có chữ số tận cùng là 1
=> D có chữ số tận cùng là 0
=> D \(⋮\)5 ( đpcm )
\(D=11^{2009}+11^{2008}+11^{2007}+...+11^{2000}\)
Số số hạng là: (2009 - 2000) : 1 + 1 = 10 (số)
Mà ta thấy số nào tận cùng bằng 1 lũy thừa bao nhiêu cũng tận cùng bằng 1
\(\Rightarrow D=...1+...1+...1+...+...1\)
\(\Rightarrow D=...0\)
Mà số nào tận cùng bằng 0 thì chia hết cho 5
Vậy \(D⋮5\)(ĐPCM)
Bài 1: Chứng minh rằng:
a, 2017 mũ 2018 + 2019 mũ 2018 chia hết cho 10
b, 19 mũ 2005 + 11 mũ 2004 chia hết cho 10
a) Lập bảng
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ... |
7n | 7 | 9 | 3 | 1 | 7 | 9 | 3 | 1 | ... |
9n | 9 | 1 | 9 | 1 | 9 | 1 | 9 | 1 | ... |
Ta có: 2018 : 4 = 504 (dư 2)
Suy ra \(2017^{2018}+2019^{2018}= \overline{...9}+\overline{...1}=\overline{...0}\)
Vậy 20172018 + 20192018 chia hết cho 10
b) Làm tương tự như câu a)
CHỨNG MINH RẰNG
A = 2 + 2 mũ 2 + 2 mũ 3 + ......+ 2 mũ 60 chia hết cho 3,7,15
B= 3 +3 mũ 3 + 3 mũ 5 +.........+3 mũ 1991 chia hết cho 13 , 41
D= 11 mũ 9 + 11 mũ 8 + 11 mũ 7 +.........+11 +1 chia hết cho 5
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{59}+2^{60}\right)=3.2+3.2^3+3.2^5+..+3.2^{59}\) Vậy A chia hết cho 3
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..+\left(2^{58}+2^{59}+2^{60}\right)=7.2+7.2^4+..+7.2^{58}\) Vậy A chia hết cho 7
\(A=\left(2+2^2+2^3+2^4\right)+..+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)=2.15+2^5.15+..+2^{57}.15\) Vậy A chia hết cho 15.
\(B=\left(3+3^3+3^5\right)+..+\left(3^{1987}+3^{1989}+3^{1991}\right)=3.91+3^7.91+..+3^{1986}.91\)
mà 91 chia hết cho 13 nên B chia hết cho 13.
\(B=\left(3+3^3+3^5+3^7\right)+..+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)=3.820+3^9.820+..+3^{1985}.820\)Mà 820 chia hết cho 41 nên B chia hết cho 41.
D : để ý rằng \(11^k\) đều có đuôi là 1
nên D có đuôi là đuôi của \(1+1+..+1=10\)
Vậy D chia hết cho 5
Chứng tỏ:64 mũ 10 - 32 mũ 11 -16 mũ 13 Chia hết cho 19
Chứng minh rằng ( 12 mũ 2012 - 2 mũ 2016 ) chia hết cho 10
( 19 mũ 215 + 11 mũ 1000 ) chia hết cho 10
chư số cuối của 122012 và 22016 đều là 2 mà 2-2=0
chư số cuối của 19215 và 111000 dều là 1 mà 1-1=0
tất cả các số cá tận cùng là 0 thì chia hết cho 10
hãy chứng minh 1+2+2 mũ 2+2 mũ 3+ 2 mũ 4+ 2 mũ 5+ 2 mũ 6+ 2 mũ 7....... 2 mũ 95 chia hết cho 15
\(=\left(1+2+2^2+2^3\right)+2^4\left(1+2+2^2+2^3\right)+....+2^{92}\left(1+2+2^2+2^3\right)\)
\(=15+15.2^4+...+15.2^{92}\)
\(=15\left(1+2^4+...+2^{92}\right)⋮15\left(đpcm\right)\)
Cho A = 2+2 mũ 2+2 mũ 3+......+2 mũ 119 + 2 mũ 120
a) Chứng minh rằng A chia hết cho 3
b) Chứng minh rằng A chia hết cho 7
a) \(A=2+2^2+...+2^{120}\)
\(\Rightarrow A=\left(2+2^2\right)+...+\left(2^{119}+2^{120}\right)\)
\(\Rightarrow A=\left(2+2^2\right)+...+2^{118}.\left(2+2^2\right)\)
\(\Rightarrow A=6+...+2^{118}.6\)
\(\Rightarrow A=6.\left(1+...+2^{118}\right)⋮3\Rightarrow A⋮3\left(đpcm\right)\)
b) \(A=2+2^2+...+2^{120}\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+...+2^{117}.\left(2+2^2+2^3\right)\)
\(\Rightarrow A=14+...+2^{117}.14\)
\(\Rightarrow A=14.\left(1+...+2^{117}\right)⋮7\Rightarrow A⋮7\left(đpcm\right)\)