cho ba số nguyên tố p p+a p+2a (p>3) chứng minh rằng a chia hết cho 6
Cho p là số nguyên tố lớn hơn 3. Biết 2p + 1 cũng là số nguyên tố chứng minh rằng: p + 1 chia hết cho 6
Lời giải:
$p>3$ và $p$ nguyên tố nên $p$ lẻ
$\Rightarrow p+1$ chẵn $\Rightarrow p+1\vdots 2(1)$
Mặt khác:
$p>3$ và $p$ nguyên tố nên $p$ không chia hết cho $3$
$\Rightarrow p=3k+1$ hoặc $p=3k+2$ với $k$ tự nhiên.
Nếu $p=3k+1$ thì $2p+1=2(3k+1)+1=3(2k+1)\vdots 3$. Mà $2p+1>3$ nên không thể là số nguyên tố (trái đề bài)
$\Rightarrow p=3k+2$
Khi đó:
$p+1=3k+3\vdots 3(2)$
Từ $(1); (2)$, mà $(2,3)=1$ nên $p+1\vdots (2.3)$ hay $p+1\vdots 6$
Bài 1:Tìm số nguyên tố, biết rằng số đó bằng tổng của 2 số nguyên tố và bằng hiệu của 2 số nguyên tố.
Bài 2: CHo ba số nguyên tố lớn hơn 3, trong đó số sau lớn hơn số trước d đơn vi. Chứng minh rằng d chia hết cho 6.
cho P và P + 2 là các số nguyên tố < P > 3 . chứng minh rằng P + 1 chia hết cho 6
Vì p lak số nguyên tố và p> 3 nên p sẽ có dạng 3k+1 và 3k+2
TH1: Nếu p=3k+1 thì p+1 = p+ 2= 3k+1+2=3k+3 chai hêt cho 3
.........................................................................→ là hợp số ( loai)
Th2: Nếu p=3k+2 thì P+1 = 3k+2+1= 3k + 3 chia hết cho 3 (1)
Vì p là số nguyên tố và p > 3 nên p là số lẻ
→ p+1 là số chẵn → p+1 chia hết cho 2 (2)
Mà (2;3)=1 nên p+1 chia hết cho ( 2.3) hay p+1 chia hết cho6
Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2 ( k ϵ N)
Nếu p = 3k+1 thì p+2= 3k+1+2= 3k+3= 3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p = 3k+1 không thoả mãn.
Vậy p có dạng p = 3k+2 ( Vì p+2= 3k+2+2= 3k+4 là một số nguyên tố)
Suy ra p+1= 3k+2+1= 3k+3= 3.(k+1) chia hết cho 3
Mặt khác, do p là số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là số nguyên tố lẻ suy ra p+1 là số chẵn suy ra p+1 là số chia hết cho 2
Vì p chia hết cho 2 và 3 mà UWCLN(2;3)=1 nên p+1 chia hết cho 6
Mong bạn tick cho mk nha!
cho p là số nguyên tố, a là số tự nhiên, a và p nguyên tố cùng nhau. chứng tỏ rằng a^(p-1) chia hết cho p
a,Chứng tỏ rằng hai số 9n+7 và 4n+3 là hai số nguyên tố cùng nhau.
b, Chứng minh rằng với mọi số tự nhiên n thì n2+n+2016 không chia hết cho 5.
Câu hỏi nhóm VRCT số 1- lớp 7
Cho ba số nguyên tố lớn hơn 3. Chứng minh rằng trong ba số đó tồn tại hai số mà tổng hoặc hiệu của chúng chia hết cho 12.
Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)
k nếu đúng nhé!
Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)
4.Cho A = 1+3+32+33+..............+32009+32010.Hãy viết 2.A+1 dưới dạng một lũy thừa.
5.Tìm số tự nhiên a lớn nhất có ba chữ số, biết rằng a chia hết cho 8 dư 7,a chia cho 31 dư 28.
6.a)Chứng tỏ abc - cba (a>c) chia hết cho 99 ;aaa chia hết cho 37 ; ababab chia hết cho 3.
b)Cho a và b là hai số nguyên tố lớn hơn 2.Chứng minh rằng a+b chia hết cho 2.
Cho p là số nguyên tố lớn hơn 3. Chứng minh rằng p2 - 1 chia hết cho 24
\(p^2-1=\left(p+1\right)\left(p-1\right)\)
trước hết p là số lẻ nêm p-1 và p+1 là 2 số chẵn liên tiếp nên chia hết cho 2*4=8
mặt khác p>3 nên p-1 hoặc p+1 chia hết cho 3
(3;8)=1 nên suy ra đpcm
vì p>3 nên p có dạng p=3k+1 hoặc p=3k+2
với p=3k+1 thì p^2-1=(p+1)(p-1)=(3k+2)3k chia hết cho 3
với p=3k+2 thì p^2-1=(p+1)(p-1)=(3k+3)(3k+1) chia hết cho 3
vậy với mọi số nguyên tố p>3 thì p^2-1 chia hết cho 3 (1)
mặt khác cũng vì p>3 nên p là số lẻ =>p+1,p-1 là 2 số chẵn liên tiếp
=>trong hai sô p+1,p-1 tồn tại một số là bội của 4
=>p^2-1 chia hết cho 8 (2)
từ (1) và (2) => p^2-1 chia hết cho 24 với mọi số nguyên tố p>3
Giả sử p là số nt nào đó lớn hơn 3
rồi đi so sánh
~~~~~ Chúc bạn học tốt ~~~~~
Cho p là số nguyên tố lớn hơn 3. Chứng minh rằng p2 - 1 chia hết cho 24
Ta có :
\(p^2-1=p^2+p-p-1=\left(p^2+p\right)-\left(p+1\right)=p\left(p+1\right)-\left(p+1\right)=\left(p+1\right)\left(p-1\right)\)
Vì p>3=> p là số lẻ => (p+1)(p-1)là 2 số chẵn liên tiếp => (p+1)(p-1) chia hết cho 8. (1)
Vì p>3 =>p có dạng : 3k+1 và 3k+2 ( k là STN )
Với p=3k+1 thì :
(p+1)(p-1) = (3k+1+1)(3k+1-1)=(3k+2).3k => (p+1)(p-1) chia hết cho 3 .
Với p=3k+2
(p+1)(p-1)=(3k+2+1)(3k+2-1)=(3k+3)(3k+1)=3(k+1)(3k+1) => (p+1)(p-1) chia hết cho 3
=> (p+1)(p-1) chia hết cho 3 . (2)
Từ (1) và (2) :
=> (p+1)(p-1) chia hết cho 24. ( Vì 3x8=24 và (3;8)=1 )
<=> p2-1 chia hết cho 24. ( p là số nguyên tố lớn hơn 3)