cho x,y,z>0. tìm giá trị nhỏ nhất của \(T=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)
Cho x, y, z > 0. Tìm giá trị nhỏ nhất của biểu thức: P = \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)
Lời giải :
\(P=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)
\(\Leftrightarrow P+3=\frac{x}{y+z}+1+\frac{y}{z+x}+1+\frac{z}{x+y}+1\)
\(\Leftrightarrow P+3=\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{x+y}\)
\(\Leftrightarrow P+3=\left(x+y+z\right)\left(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\right)\)
\(\Leftrightarrow2\left(P+3\right)=\left(x+y+y+z+z+x\right)\left(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\right)\)
Áp dụng BĐT Cô-si :
\(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\ge3\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\ge3\sqrt[3]{\frac{1}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}}\)
Do đó :
\(2\left(P+3\right)\ge\frac{3\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\cdot3\sqrt[3]{1}}{\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}}\)
\(\Leftrightarrow2P+6\ge9\)
\(\Leftrightarrow P\ge\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
___
p/s: BĐT còn gọi là BĐT Nesbitt. Có nhiều cách chứng minh, bạn có thể lên gg tìm hiểu.
xin thêm 1 cách
Đặt \(\hept{\begin{cases}a=y+z>0\\b=z+x>0\\c=x+y>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{b+c-a}{2}\\y=\frac{a+c-b}{2}\\z=\frac{a+b-c}{2}\end{cases}}\)Thay vào P ta được:
\(P=\frac{b+c-a}{2a}+\frac{a+c-b}{2b}+\frac{a+b-c}{2c}\)
\(=\frac{b}{2a}+\frac{c}{2a}-\frac{1}{2}+\frac{a}{2b}+\frac{c}{2b}-\frac{1}{2}+\frac{a}{2c}+\frac{b}{2c}-\frac{1}{2}\)
\(=\left(\frac{b}{2a}+\frac{a}{2b}\right)+\left(\frac{c}{2a}+\frac{a}{2c}\right)+\left(\frac{b}{2c}+\frac{c}{2b}\right)-\frac{3}{2}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{b}{2a}+\frac{a}{2b}\ge2\sqrt{\frac{b}{2a}.\frac{a}{2b}}=1\)
CMTT\(P\ge3-\frac{3}{2}\)
\(\Rightarrow P\ge\frac{3}{2}\)
Dấu"="xảy ra \(\Leftrightarrow x=y=z\)
\(\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(=\frac{\sqrt{a}\left(a\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-2\sqrt{a}-1+1\)
\(=\sqrt{a}\left(\sqrt{a}+1\right)-2\sqrt{a}\)
\(=a+\sqrt{a}-2\sqrt{a}=a-\sqrt{a}\)
cho x,y,z>0 thỏa mãn \(x+y+z\ge2019\)tìm giá trị nhỏ nhất của \(T=\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\)
Áp dụng BĐT Cauchy-Schwarz Engel, ta được:
T\(\ge\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\)+x+y+z+\(\sqrt{xy}\)+\(\sqrt{yz}\)+\(\sqrt{zx}\)-(x+y+z+\(\sqrt{xy}\)+\(\sqrt{yz}\)+\(\sqrt{zx}\))
Áp dụng BĐT AM-GM , ta được:
T\(\ge\)2(x+y+z)-x-y-z-\(\frac{x+y+z}{2}\)=\(\frac{x+y+z}{2}\)\(\ge\)\(\frac{2019}{2}\)
Vậy: GTNN của A=\(\frac{2019}{2}\)khi x=y=z=673
\(T>=\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\)(bunhiacopxki dạng phân thức)
=>\(T>=\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}}\)
=>\(T>=\frac{2\left(x+y+z\right)^2}{4\left(x+yz\right)}=\frac{x+y+z}{2}=\frac{2019}{2}\)
xảy ra dấu= khi và chỉ khi \(x=y=z=\frac{2019}{3}\)
Cho các số thực x, y, z > 0 thỏa mãn x + y + z =3. Tìm giá trị nhỏ nhất của P =\(\frac{3+x^2}{y+z}+\frac{3+y^2}{x+z}+\frac{3+z^2}{x+y}\)
Cho x , y , z > 0 , x + y + z = 3 . Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
áp dụng BĐT Cauchy ta có
\(\frac{x^3}{y+2z}+\frac{y+2z}{9}+\frac{1}{3}>=3\sqrt[3]{\frac{x^3}{y+2z}.\frac{\left(y+2z\right)}{9}.\frac{1}{3}}=x\)
\(=>\frac{x^3}{y+2z}>=x-\frac{y+2z}{9}-\frac{1}{3}\)
Tương tự \(\frac{y^3}{z+2x}>=y-\frac{z+2x}{9}-\frac{1}{3}\),\(\frac{z^3}{x+2y}>=z-\frac{x+2y}{9}-\frac{1}{3}\)
\(=>P>=\left(x+y+z\right)-\frac{3\left(x+y+z\right)}{9}-\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right)\)
Mà x+y+z=3
\(=>P>=3-1-1=1\)
=>Min P=1
Dấu "=" xảy ra khi x=y=z=1
một cách khác khá hay nhưng dài hơn:
\(P=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{xz+2yz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+xz\right)}\ge\frac{x^2+y^2+z^2}{3}\ge\frac{\frac{1}{3}\left(x+y+z\right)^2}{3}=1\)
Cho x,y,z>0 tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)
tìm giá trị nhỏ nhất của biểu thức:
B=\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)biết x,y,z>0 và x+y+z=4
\(B=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+y}\)
Áp dụng BĐT cô si:
\(\frac{x^2}{x+y}+\frac{x+y}{4}\ge2\sqrt{\frac{x^2}{x+y}.\frac{x+y}{4}}=x\)
CMTT: \(\frac{y^2}{y+z}+\frac{y+z}{4}\ge y\)
\(\frac{z^2}{x+z}+\frac{x+z}{4}\ge z\)
Cộng vế với vế ta được:
\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+z}+\frac{x+y}{4}+\frac{y+z}{4}+\frac{x+z}{4}\ge x+y+z\)
\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+z}\ge4-\frac{2.\left(x+y+z\right)}{4}=4-2=2\)
\(B\ge2\)
Dấu = xảy ra \(\Leftrightarrow x=y=z=\frac{4}{3}\)
sờ vác xơ
\(B=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
\(\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}\)
\(=2\)
Dấu "=" xảy ra tại \(x=y=z=\frac{4}{3}\)
Cho x , y , z > 0 và x + y + x \(\ge\)4 . TÌm giá trị nhỏ nhất của
\(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Áp dụng bất đẳng thức AM - GM t có:
\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge4\sqrt{\frac{x^2}{x+y}.\frac{x+y}{4}}=x\)(1)
Tương tự t có: \(\frac{y^2}{z+x}+\frac{z+x}{4}\ge y\)(2)
\(\frac{x^2}{x+y}+\frac{x+y}{4}\ge z\)(3)
Từ (1); (2); (3) t có:
\(\left(\frac{x^2}{y+z}+\frac{y+z}{4}\right)+\left(\frac{y^2}{z+x}+\frac{x+z}{4}\right)+\left(\frac{x^2}{x+y}+\frac{x+y}{4}\right)\ge x+y+z\)
Từ x + y + z \(\ge\) 4, t có:
\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{x^2}{x+y}\ge\frac{x+y+z}{4}\)
Vậy giá trị nhỏ nhất của P là 1, đạt được khi \(x=y=z=\frac{2}{3}\)
áp dụng bđt Bunyakovsky dạng phân thức ta có: P >=(x+y+z)^2/(x+y+z)=(x+y+z)/2=2
đẳng thức xảy ra <=> x=y=z=4/3
Cho x, y, z > 0 và x + y + z = 2019.
Tìm giá trị nhỏ nhất của biểu thức :
\(A=\sqrt{\left(x+y\right)\left(y+z\right)\left(z+x\right)}.\left(\frac{\sqrt{y+z}}{x}+\frac{\sqrt{z+x}}{y}+\frac{\sqrt{x+y}}{z}\right)\)
Cho x,y,z là các số thực dương thỏa mãn x+y+z=2. Tìm Giá trị nhỏ nhất của biểu thức
\(T=\frac{x^3}{y^2+z}+\frac{y^3}{z^2+x}+\frac{z^3}{x^2+y}\)
Ta có \(\left(\frac{x^3}{y^2+z}+\frac{y^3}{z^2+x}+\frac{z^3}{x^2+y}\right)\left[x\left(y^2+x\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\ge\left(x^2+y^2+z^2\right)^2\left(1\right)\)
Ta chứng minh \(\left(x^2+y^2+z^2\right)^2\ge\frac{4}{5}\left[x\left(y^2+z\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\)
\(\Leftrightarrow5\left(x^2+y^2+z^2\right)^2\ge4\left[x\left(y^2+z\right)+y\left(z^2+x\right)+z\left(x^2+y\right)\right]\left(2\right)\)
Thật vậy \(\hept{\begin{matrix}3\left(\Sigma x^2\right)^2\ge\left(\Sigma x^2\right)\cdot\Sigma x^2=4\Sigma zx\left(3\right)\\2\left(\Sigma x^2\right)^2\ge4\Sigma xy^2\left(4\right)\end{matrix}\Leftrightarrow2\left(\Sigma x^2\right)^2\ge\Sigma xy^2\left(x+y+z\right)}\)(*)
Từ các Bất Đẳng Thức \(\hept{\begin{cases}\frac{x^4-2x^3z+z^2x^2}{2}\ge0\\\frac{x^4+y^4+2x^4}{4}\ge xyz^2\end{cases}}\)=> (*) đúng
Như vậy (3),(4) đúng => (2) đúng
Từ đó suy ra \(T\ge\frac{4}{5}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)