tính hợp lý
B=1+1/2.(1+2)+1/3.(1+2+3)+1/4.(1+2+3+4)+....+1/20.(1+2+3+...+20)
Tính bằng cách hợp lý
B=(5/2019+4/2020-3/2021).(1/2-1/3-1/6)
\(B=\left(\dfrac{5}{2019}+\dfrac{4}{2020}-\dfrac{3}{2021}\right)\cdot\dfrac{3-2-1}{6}=0\)
Thực hiện phép tính hợp lí nhất
1 +1/2 (1+2) +1/3 ( 1+ 2 +3 ) + 1/4 (1+2+3+4) + ....+ 1/20 (1+2+3+....+20)
=1+1/2.(3.2/2)+1/3.(4.3/2)+1/4.(5.4/2)+...+1/20.(21.20/2)
=1+3/2+2+5/2+...+21/2 ( rút gọn)
=2/2+3/2+4/2+5/2+...+21/2
=(2+3+4+5+...+21)/2=(20.23)/2.2=(20.23)/4
=23.5=115
Ko bt mk lm dung ko nx?
TÍNH: B= 1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/20(1+2+3+4+...+20)
tính:
1+1/2.(1+2)+1/3.(1+2+3)+1/4.(1+2+3+4)+...+1/20.(1+2+3+4+5+...+20)
tính A= 1+1/2*(1+2)+1/3*(1+2+3)+1/4*(1+2+3+4)+...+1/20*(1+2+3+...+20)
Tính A=1+1/2*[1+2]+1/3*[1+2+3]+1/4*[1+2+3+4]+.............+1/20*[1+2+3+....+20]
Tính B= 1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/20(1+2+3+...+20)
Tính B=1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/20(1+2+3+...+20)
tính B=1+1/2*(1+2)+1/3*(1+2+3)*1/4*(1+2+3+4)+...+1/20*(1+2+3+...+20)
\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)\)
\(=1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3\left(3+1\right)}{2}+...+\frac{1}{20}.\frac{20\left(20+1\right)}{2}\)
\(=\frac{2}{2}+\frac{2+1}{2}+\frac{3+1}{2}+...+\frac{20+1}{2}\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{20}{2}\)
\(=\frac{2+3+4+...+20}{2}=\frac{\frac{20\left(20+1\right)}{2}-1}{2}=\frac{209}{2}\)