Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thuy Le
Xem chi tiết
Sorcerer_of_Dark_Magic
Xem chi tiết
Kim Mi Young
19 tháng 3 2021 lúc 21:42

A=x2−2xy+6y2−12x+2y+45

=(x2−2xy+y2−12x+12y+36)+(5y2−10y+5)+4

=[(x−y)2−12(x+y)+62]+5(y2−2y+1)+4

=(x−y+6)2+5(y−1)2+4

Ta có: (x−y+6)2≥0∀x,y

5(y−1)2≥0∀y

⇒(x−y+6)2+5(y−1)2+4≥4∀x,y

Dấu "=" xảy ra ⇔x=7,y=1

Vậy 

Khách vãng lai đã xóa
 挑剔的少爷
Xem chi tiết
trang
1 tháng 8 2019 lúc 15:34

đề bài này đúng ko bạn : x2 -2xy + 6y2-12x+2y+45

 挑剔的少爷
1 tháng 8 2019 lúc 15:36

ko đúng bn ơi 

A = x2 - 2xy +6y2 - 12x + 2y +45 

Đ𝒂𝒏 𝑫𝒊ệ𝒑
1 tháng 8 2019 lúc 15:38

A = (x - y - 6)2 - 6y- 2y - 45 - (y2 - 12y - 36)

A = (x - y -6)2 + 5(y-1)2 +4 \(\ge\)4

Amin = 4 khi y = 1; x = 7

#chanh

Daisy
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 10 2021 lúc 20:32

a: Ta có: \(B=x^2-4x+6\)

\(=x^2-4x+4+2\)

\(=\left(x-2\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi x=2

hghghghg
Xem chi tiết
quách anh thư
14 tháng 2 2018 lúc 20:10

x^2 - 2xy + 6y^2 - 12x + 2y +45 
= x^2 - 2x(y+6) + (y+6)^2 - (y+6)^2 + 6y^2 +2y + 45 
= (x - y - 6)^2 - y^2 - 12y - 36 + 6y^2 + 2y + 45 
= (x - y - 6)^2 + 5y^2 - 10y + 9 
= (x - y - 6)^2 + 5.(y^2 - 2y +1) + 4 
= (x - y - 6)^2 + 5.(y-1)^2 + 4 
=>> MIN = 4 khi (x;y) = {(7;1)}

Mai Anh
14 tháng 2 2018 lúc 20:10

\(A=x^2-2xy+6y^2-12x+2y+45\)

\(=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+4\)

\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)

GTNN A = 4 Khi: \(\hept{\begin{cases}y-1=0\\x-y-6=0\end{cases}\Rightarrow\hept{\begin{cases}y=1\\x=7\end{cases}}}\)

Love Scenario
31 tháng 3 2019 lúc 22:03

\(A=x^2-2xy+6y^2-12x+2y\)\(+45\)

 \(=x^2+y^2+36-2xy-12x\)\(+12y+5y^2-10y+5+4\)

 \(=\left(x-y-6\right)^2+5\left(y-1\right)^2\)\(+4\ge4\)

GTNN của A là 4 khi \(\hept{\begin{cases}y-1=0\\x-y-6=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}y=1\\x-y=6\end{cases}\Rightarrow\hept{\begin{cases}y=1\\x=7\end{cases}}}\)

Vậy BT A đạt giá trị nhỏ nhất là 4 tại x = 7 và y = 1

key monstar
Xem chi tiết
Trịnh Hải Nam
5 tháng 8 2018 lúc 22:29

4 Ok

Phùng Khánh Linh
6 tháng 8 2018 lúc 9:00

\(A=x^2-2xy+6y^2-12x+2y+45\)

\(A=x^2-2xy+y^2-12x+12y+36+5y^2-10y+5+4\)

\(A=\left(x-y\right)^2-2.6\left(x-y\right)+36+5\left(y^2-2y+1\right)+4\)

\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)

Do : \(\left(x-y-6\right)^2\text{≥}0\)\(xy\) ; \(5\left(y-1\right)^2\text{≥}0\text{∀}y\)

\(\left(x-y-6\right)^2+5\left(y-1\right)^2\text{ ≥}0\)

\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\text{≥}4\)

\(A_{Min}=4."="\text{⇔}x=7;y=1\)

Đức Lộc
Xem chi tiết
Tuấn Nguyễn
26 tháng 11 2018 lúc 21:32

\(A=x^2-2xy+6y^2-12x+2y+54\)

\(A=x^2-2xy+y^2-12x+12y+36+5y^2-10y+5+4\)

\(A=\left(x-y\right)^2-2.6\left(x-y\right)+36+5\left(y^2-2y+1\right)+4\)

\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)

Do: \(\left(x-y-6\right)^2\ge0\forall xy\)\(5\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-y-6\right)^2+5\left(y-1\right)^2\ge0\)

\(\Leftrightarrow A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)

\(\Rightarrow A_{Min}=4\)

Dấu "=" xảy ra khi \(x=7;y=1\)

banhbaomo
Xem chi tiết
Phạm Thị Thu Linh
Xem chi tiết

\(A=x^2-2xy+6y^2-12x+2y+45\)

\(=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+4\)

\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)

Gía trị nhỏ nhất : \(A=4\)Khi \(\hept{\begin{cases}y-1=0\\x-y-6=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\x=7\end{cases}}\)