Tìm các số nguyên x, y thỏa mãn : 2xy+ 3x+ 5y=1
Cảm ơn nhé!
Tìm các cặp số nguyên x, y thỏa mãn: 2xy+3x-5y=10
Tìm các cặp số nguyên x, y thỏa mãn: 2xy+3x-5y=10
giups mik vs
pt này không phân tích thành nhân tử để làm được đáng lẽ ra 4y thì sẽ làm được ấy bạn
=>4xy+6x-10y=20
=>2y(2x-5)+6x-15=5
=>(2x-5)(2y+3)=5
=>\(\left(2x-5;2y+3\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(3;1\right);\left(5;-1\right);\left(2;-4\right);\left(0;-2\right)\right\}\)
Tìm các số nguyên x;y thỏa mãn :
a/ 2xy - 3x + 5y = 4
b/ 2x2 - 2xy + x + y = 14
a) 2xy - 3x + 5y = 4
=> 2(2xy - 3x + 5y) = 8
=> 4xy + 6x + 10y = 8
=> 2x(2y + 3) + 5(2y + 3) = 23
=> (2x + 5)(2y + 3) = 23
=> 2x + 5; 2y + 3 \(\in\)Ư(23) = {1; -1; 23; -23}
Lập bảng:
2x + 5 | 1 | -1 | 23 | -23 |
2y + 3 | 23 | -23 | 1 | -1 |
x | -2 | -3 | 9 | -14 |
y | 10 | -13 | -1 | -2 |
Vậy ...
Tìm các cặp số nguyên dương (x; y) thỏa mãn 6x + 5y +18 = 2xy
\(\Leftrightarrow2xy-6x-5y=18\)
\(\Leftrightarrow2x\left(y-3\right)-5\left(y-3\right)=33\)
\(\Leftrightarrow\left(2x-5\right)\left(y-3\right)=33\)
Phương trình ước số cơ bản
Tìm các số nguyên x;y thỏa mãn :
a/ 2xy - 4x + 3y = 11
b/ 2xy - 3x + 5y = 4
c/ x2 - xy + x = 4y - 5
d/ 2x2 - 2xy + x + y = 14
Có bao nhiêu cặp số nguyên (x;y) thỏa mãn 5y – 3x = 2xy – 11
Lời giải:
$5y-3x=2xy-11$
$\Leftrightarrow 10y-6x=4xy-22$
$\Leftrightarrow (10y-4xy)-6x+22=0$
$\Leftrightarrow 2y(5-2x)+3(5-2x)+7=0$
$\Leftrightarrow (2y+3)(5-2x)=-7$
Do $x,y$ nguyên nên có các TH sau:
$2y+3=1; 5-2x=-7\Rightarrow (x,y)=(6; -1)$
$2y+3=-1; 5-2x=7\Rightarrow (x,y)=(-1; -2)$
$2y+3=7; 5-2x=-1\Rightarrow (x,y)=(3; 2)$
$2y+3=-7; 5-2x=1\Rightarrow (x,y)=(2,-5)$
Vậy có 4 cặp số thỏa mãn.
Tìm các cặp số nguyên dương (x;y) thỏa mãn: 6x+5y+18=2xy
Ta có: \(6x+5y+18=2xy\)
\(\Leftrightarrow6x+5y-2xy=-18\)
\(\Leftrightarrow2x\left(3-y\right)+5y=-18\)
\(\Leftrightarrow2x\left(3-y\right)+5y-15=-18-15\)
\(\Leftrightarrow2x\left(3-y\right)+5\left(y-3\right)=-33\)
\(\Leftrightarrow2x\left(3-y\right)-5\left(3-y\right)=-33\)
\(\Leftrightarrow\left(3-y\right)\left(2x-5\right)=-33\)
Dễ rồi
a, 3x ( y+1) + y + 1 = 7
(y+1)(3x +1) =7
th1 : \(\left\{{}\begin{matrix}y+1=1\\3x+1=7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y+1=-1\\3x+1=-7\end{matrix}\right.\)=> x = -8/3 (loại)
th3: \(\left\{{}\begin{matrix}y+1=7\\3x+1=1\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}y=6\\x=0\end{matrix}\right.\)
th 4 : \(\left\{{}\begin{matrix}y+1=-7\\3x+1=-1\end{matrix}\right.\)=> x=-2/3 (loại)
Vậy (x,y)= (2 ;0); (0; 6)
b, xy - x + 3y - 3 = 5
(x( y-1) + 3( y-1) = 5
(y-1)(x+3) = 5
th1: \(\left\{{}\begin{matrix}y-1=1\\x+3=5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=2\\x=8\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y-1=-1\\x+3=-5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=-8\end{matrix}\right.\)
th3: \(\left\{{}\begin{matrix}y-1=5\\x+3=1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=6\\x=-2\end{matrix}\right.\)
th4: \(\left\{{}\begin{matrix}y-1=-5\\x+3=-1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=-4\\x=-4\end{matrix}\right.\)
vậy (x, y) = ( 8; 2); ( -8; 0); (-2; 6); (-4; -4)
c, 2xy + x + y = 7 => y = \(\dfrac{7-x}{2x+1}\) ; y ϵ Z ⇔ 7-x ⋮ 2x+1
⇔ 14 - 2x ⋮ 2x + 1 ⇔ 15 - 2x - 1 ⋮ 2x + 1
th1 : 2x + 1 = -1=> x = -1; y = \(\dfrac{7-(-1)}{-1.2+1}\) = -8
th2: 2x+ 1 = 1=> x =0; y = 7
th3: 2x+1 = -3 => x = x=-2 => y = \(\dfrac{7-(-2)}{-2.2+1}\) = -3
th4: 2x+ 1 = 3 => x = 1 => y = \(\dfrac{7+1}{2.1+1}\) = 2
th5: 2x + 1 = -5 => x = -3=> y = \(\dfrac{7-(-3)}{-3.2+1}\) = -2
th6: 2x + 1 = 5 => x = 2; ; y = \(\dfrac{7-2}{2.2+1}\) =1
th7 : 2x + 1 = -15 => x = -8; y = \(\dfrac{7-(-8)}{-8.2+1}\) = -1
th8 : 2x+1 = 15 => x = 7; y = \(\dfrac{7-7}{2.7+1}\) = 0
kết luận
(x,y) = (-1; -8); (0 ;7); ( -2; -3) ; ( 1; 2); ( -3; -2); (2;1); (-8;-1);(7;0)
3xy−2x+5y=293xy−2x+5y=29
9xy−6x+15y=879xy−6x+15y=87
(9xy−6x)+(15y−10)=77(9xy−6x)+(15y−10)=77
3x(3y−2)+5(3y−2)=773x(3y−2)+5(3y−2)=77
(3y−2)(3x+5)=77(3y−2)(3x+5)=77
⇒(3y−2)⇒(3y−2) và (3x+5)(3x+5) là Ư(77)=±1,±7,±11,±77Ư(77)=±1,±7,±11,±77
Ta có bảng giá trị sau:
Do x,y∈Zx,y∈Z nên (x,y)∈{(−4;−3),(−2;−25),(2;3),(24;1)}
Tìm các cặp số nguyên ( x ; y ) thỏa mãn : \(6x+5y+15=2xy\)
ta có: \(6x+5y+15=2xy.\)
\(\Leftrightarrow2x\left(3-y\right)-5\left(3-y\right)=-30\)
\(\Leftrightarrow\left(2x-5\right)\left(3-y\right)=-30\)
mà 2x-5 là số lẻ nên \(2x-5\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
\(\Leftrightarrow x\in\left\{3;2;4;1;5;0;10;-5\right\}\)
\(\Leftrightarrow y\in\left\{33;-27;13;-7;9;-3;5;1\right\}\)