Bài 69 (trang 36 SGK Toán 9 Tập 1)
So sánh
a) 5 và $\sqrt[3]{123}$ ; b) $5 \sqrt[3]{6}$ và $6 \sqrt[3]{5}$.
Bài 27 (trang 16 SGK Toán 9 Tập 1)
So sánh
a) $4$ và $2\sqrt{3}$ ; b) $-\sqrt{5}$ và $-2$.
a) Ta có:
4>3⇔√4>√3⇔2>√3⇔2.2>2.√3⇔4>2√34>3⇔4>3⇔2>3⇔2.2>2.3⇔4>23
Cách khác:
Ta có:
⎧⎨⎩42=16(2√3)2=22.(√3)2=4.3=12{42=16(23)2=22.(3)2=4.3=12
Vì 16>12⇔√16>√1216>12⇔16>12
Hay 4>2√34>23.
b) Vì 5>4⇔√5>√45>4⇔5>4
⇔√5>2⇔5>2
⇔−√5<−2⇔−5<−2 (Nhân cả hai vế bất phương trình trên với −1−1)
Vậy −√5<−2−5<−2.
a, Ta có : \(4=\sqrt{16}\); \(2\sqrt{3}=\sqrt{4.3}=\sqrt{12}\)
Do 12 < 16 hay \(2\sqrt{3}< 4\)
b, Ta có : \(-2=-\sqrt{4}\)
Do \(4< 5\Rightarrow\sqrt{4}< \sqrt{5}\Rightarrow-\sqrt{4}>-\sqrt{5}\)
Vậy \(-2>-\sqrt{5}\)
a) \(2\sqrt{3}=\sqrt{3\cdot2^2}=\sqrt{12}\); \(4=\sqrt{16}\)
Vì \(\sqrt{12}< \sqrt{16}\)=> \(4>2\sqrt{3}\)
b) \(-2=-\sqrt{4}\)
Vì \(\sqrt{4}< \sqrt{5}\)=> \(-\sqrt{4}>-\sqrt{5}\)hay \(-2>-\sqrt{5}\)
Bài 2 (trang 6 SGK Toán 9 Tập 1)
So sánh
a) $2$ và $\sqrt{3}$ ; b) $6$ và $\sqrt{41}$ ; c) $7$ và $\sqrt{47}$.
Trả lời:
a) ta có: 2 = √4
Vì 4 > 3 nên √4 > √3
Vậy 2 > √3
b) Ta có: 6 = √36
Vì 36 < 41 nên √36 < √41
Vậy 6 < √41
c) ta có 7 = √49
Vì 49 > 47 nên √49 > √47
Vậy 7 > √47
Bài 26 (trang 16 SGK Toán 9 Tập 1)
a) So sánh $\sqrt{25+9}$ và $\sqrt{25}+\sqrt{9}$ ;
b) Với $a>0$ và $b>0$, chứng minh $\sqrt{a+b}<\sqrt{a}+\sqrt{b}$.
a) Ta có:
+)√25+9=√34+)25+9=34.
+)√25+√9=√52+√32=5+3+)25+9=52+32=5+3
=8=√82=√64=8=82=64.
Vì 34<6434<64 nên √34<√6434<64
Vậy √25+9<√25+√925+9<25+9
b) Với a>0,b>0a>0,b>0, ta có
+)(√a+b)2=a+b+)(a+b)2=a+b.
+)(√a+√b)2=(√a)2+2√a.√b+(√b)2+)(a+b)2=(a)2+2a.b+(b)2
=a+2√ab+b=a+2ab+b
=(a+b)+2√ab=(a+b)+2ab.
Vì a>0, b>0a>0, b>0 nên √ab>0⇔2√ab>0ab>0⇔2ab>0
⇔(a+b)+2√ab>a+b⇔(a+b)+2ab>a+b
⇔(√a+√b)2>(√a+b)2⇔(a+b)2>(a+b)2
⇔√a+√b>√a+b⇔a+b>a+b (đpcm)
a, Ta có : \(\sqrt{25+9}=\sqrt{34}\)
\(\sqrt{25}+\sqrt{9}=5+3=8=\sqrt{64}\)
mà 34 < 64 hay \(\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)
b, \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)
bình phương 2 vế ta được : \(a+b< a+2\sqrt{ab}+b\)
\(\Leftrightarrow2\sqrt{ab}>0\)vì \(a;b>0\)nên đẳng thức này luôn đúng )
Vậy ta có đpcm
a) \(\sqrt{25+9}=\sqrt{34}\)
\(\sqrt{25}+\sqrt{9}=5+3=8=\sqrt{64}\)
=> \(\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)
b) Vì a,b > 0, bình phương hai vế ta có :
a + b < a + 2√ab + b
<=> -2√ab < 0 <=> 2√ab > 0 ( đúng vì a,b > 0 )
=> đpcm
Bài 45 (trang 27 SGK Toán 9 Tập 1)
So sánh
a) $3 \sqrt{3}$ và $\sqrt{12}$ ; b) $7$ và $3 \sqrt{5}$ ;
c) $\dfrac{1}{3} \sqrt{51}$ và $\dfrac{1}{5} \sqrt{150}$ ; d) $\dfrac{1}{2} \sqrt{6}$ và $6 \sqrt{\dfrac{1}{2}}$.
a) 3\(\sqrt{3}\)=\(\sqrt{27}\)>\(\sqrt{12}\)
c) \(\frac{1}{3}\)\(\sqrt{51}\)=\(\sqrt{\frac{51}{9}}\)<\(\frac{1}{5}\)\(\sqrt{150}\)=\(\sqrt{\frac{150}{25}}\)=\(\sqrt{6}\)
b) 3\(\sqrt{5}\)=\(\sqrt{45}\)< 7=\(\sqrt{49}\)
d) \(\frac{1}{2}\sqrt{6}\)=\(\sqrt{\frac{6}{4}}\)=\(\sqrt{\frac{3}{2}}\)< 6\(\sqrt{\frac{1}{2}}\)=\(\sqrt{\frac{36}{2}}\)=\(\sqrt{18}\)
a) Ta có:
Vì nên
Vậy .
b) Ta có:
Vì nên
Vậy .
nên
.
a) \(3\sqrt{3}=\sqrt{9}.\sqrt{3}=\sqrt{27}>\sqrt{12}\)
b) \(3\sqrt{5}=\sqrt{9}.\sqrt{5}=\sqrt{45}< \sqrt{49}=7\)
c) \(\dfrac{1}{3}\sqrt{51}=\sqrt{\dfrac{1}{9}}.\sqrt{51}=\sqrt{\dfrac{51}{9}}=\sqrt{\dfrac{17}{3}}< \sqrt{6}=\dfrac{1}{5}\sqrt{150}\)
d) \(\dfrac{1}{2}\sqrt{6}=\sqrt{\dfrac{3}{2}}< \sqrt{18}=6\sqrt{\dfrac{1}{2}}\)
Bài 45 (trang 27 SGK Toán 9 Tập 1): So sánh:
a) `3\sqrt3=\sqrt(3^2 .3)=\sqrt27`
\sqrt12=\sqrt12`
`=> \sqrt27 > \sqrt12`
`=> 3\sqrt3 > \sqrt12`
b) `7=\sqrt(7^2)=\sqrt49`
`3\sqrt5=\sqrt(3^2 .5)=\sqrt45`
`=> \sqrt49>\sqrt45`
`=>7>3\sqrt5`
c) `1/3 \sqrt51 = \sqrt( (1/3)^2 .51) =\sqrt(17/3)`
`1/5 \sqrt150 =\sqrt( (1/5)^2 .150)=\sqrt6`
`=> \sqrt(17/3) < \sqrt6`
`=> 1/3 \sqrt51 < 1/5 \sqrt150`
d) `1/2 \sqrt6 = \sqrt(3/2)`
`6\sqrt(1/2) =\sqrt(18)`
`=> \sqrt(3/2) < \sqrt18`
`=> 1/2 \sqrt6 < 6\sqrt(1/2)`.
Bài 65 (trang 34 SGK Toán 9 Tập 1)
Rút gọn rồi so sánh giá trị của $M$ với $1$, biết
$M=\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right): \dfrac{\sqrt{a}+1}{a-2 \sqrt{a}+1}$ với $a>0$ và $a \neq 1$.
Rút gọn ta được:
M=√a−1/√a
Viết M ở dạng M=1−1/√a
suy ra M<1
Với \(x>0;x\ne1\)
\(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
\(=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
\(=\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{\sqrt{a}-1}{\sqrt{a}}\)
\(=1-\frac{1}{\sqrt{a}}< 1\)hay M < 1
M = 1 - 1/√a < 1
Bài 67 (trang 36 SGK Toán 9 Tập 1)
Hãy tìm
$\sqrt[3]{512}$ ; $\sqrt[3]{-729}$ ; $\sqrt[3]{0,064}$ ; $\sqrt[3]{-0,216}$ ; $\sqrt[3]{-0,008}$.
Ta có:
+ 3√512=3√83=8;5123=833=8;
+ 3√−729=3√(−9)3=−9;−7293=(−9)33=−9;
+ 3√0,064=3√0,43=0,4;0,0643=0,433=0,4;
+ 3√−0,216=3√(−0,6)3=−0,6;−0,2163=(−0,6)33=−0,6;
+ 3√−0,008=3√(−0,2)3=−0,2.
Đáp án:
( lần lượt như trên nhé!!! Ko viết lại đề)
8 ; - 9 ; 0,4 ; - 0,6 ; - 0,2
Kết quả lần lượt là ; ; ; ;
Bài 31 (trang 19 SGK Toán 9 Tập 1)
a) So sánh $\sqrt{25-16}$ và $\sqrt{25}-\sqrt{16}$ ;
b) Chứng minh rằng, với $a>b>0$ thì $\sqrt{a}-\sqrt{b}<\sqrt{a-b}$.
a, Ta có \(\sqrt{25-16}=\sqrt{9}=3\)
\(\sqrt{25}-\sqrt{16}=5-4=1\)
Do 3 > 1 nên \(\sqrt{25-16}>\sqrt{25}-\sqrt{16}\)
a) căn 25 - 16 > căn 25 - căn 16
b)Với nên đều xác định
Để so sánh và ta quy về so sánh và .
+) .
+)
.
Do nên
Do
(đpcm)
Vậy .
a) +) .
+) .
Vì nên .
Vậy .
b) Với nên đều xác định.
Để so sánh và ta quy về so sánh và .
+) .
+) .
Do nên
Do
(đpcm)
Vậy .
Bài 36 (trang 20 SGK Toán 9 Tập 1)
Mỗi khẳng định sau đúng hay sai? Vì sao?
a) $0,01 = \sqrt{0,0001}$ ;
b) $-0,5 = \sqrt{-0,25}$ ;
c) $\sqrt{39} < 7$ và $\sqrt{39} > 6$ ;
d) $(4 -\sqrt{3}).2x < \sqrt{3}(4 - \sqrt{13})$
$\Leftrightarrow$ $2x < \sqrt{13}$.
a) Đúng. Vì √0,0001=√0,012=0,010,0001=0,012=0,01
Vì VP=√0,0001=√0,012=0,01=VTVP=0,0001=0,012=0,01=VT.
b) Sai.
Vì vế phải không có nghĩa do số âm không có căn bậc hai.
c) Đúng.
Vì: 36<39<4936<39<49 ⇔√36<√39<√49⇔36<39<49
⇔√62<√39<√72⇔62<39<72
⇔6<√39<7⇔6<39<7
Hay √39>639>6 và √39<739<7.
d) Đúng.
Xét bất phương trình đề cho:
(4−√13).2x<√3.(4−√13)(4−13).2x<3.(4−13) (1)(1)
Ta có:
16>13⇔√16>√1316>13⇔16>13
⇔√42>√13⇔42>13
⇔4>√13⇔4>13
⇔4−√13>0⇔4−13>0
Chia cả hai vế của bất đẳng thức (1)(1) cho số dương (4−√13)(4−13), ta được:
(4−√13).2x(4−√13)<√3.(4−√13)(4−√13)(4−13).2x(4−13)<3.(4−13)(4−13)
⇔2x<√3.⇔2x<3.
Vậy phép biến đổi tương đương trong câu d là đúng.
a ) Đúng
b) Sai vì vế phải không có nghĩa
c) Đúng
d) Đúng
a) Đúng, vì .
b) Sai, vì vế phải không có nghĩa.
(Do có nghĩa khi )
c) Đúng, vì và .
d) Đúng, vì .
Ta có:
(giản ước hai vế với ()).