2n + 1 chia hết cho 16 - 3n
Tìm số tự nhiên n, biết
a) 38-3n chia hết cho n
b)16-3n chia hết cho n+2
c)2n+1 chia hết cho 16-3n
n+5chia hết cho n+1
3n+4 chia hết cho n-1
2n+1 chia hết cho 16-3n
b) ta có 3n+4 chia hết cho n-1
nên 3n+4 chia hết cho 3n+-3
3n+(-3)+7 chia hết cho 3n+-3
nên 7 chia hết cho 3n-3
do đó 3n-3=1 hoặc 7
tìm số nguyên n sao cho :
1,n^2+2n-4 chia hết cho 11
2,2n^3+n^2+7n+1 chia hết cho 2n -1
3,n^4-2n^3+2n^2-2n+1 chia hết cho n^4-1
o l m . v n
4,n^3-2 chia hết cho n-2
5, n^3-3n^2-3n-1 chia hết cho n^2+n+1
6, 5^n-2^n chia hết cho 63
Tim STN n de
a) n+6 chia hết cho n
b) 3n+4 chia het cho n-1
c) 2n+1 chia het cho 16-3n
d) 3-2n chia hết cho n+1
e) n^ 2 + 2n + 6 chia hết cho n+4
e) n2 + 2n + 6 chia hết cho n + 4
n2 + 4n - 2n + 6 chia hết cho n + 4
n.(n + 4) - 2n + 6 chia hết cho n + 4
2n + 6 chia hết cho n + 4
2n + 8 - 2 chia hết cho n + 4
2.(n + 4) - 2 chia hết cho n + 4
=> - 2 chia hết cho n + 4
=> n + 4 thuộc Ư(-2) = {1 ; -1 ; 2 ; -2}
Xét 4 trường hợp ,ta có :
n + 4 = 1 => n = -3
n + 4 = -1 => n = -5
n + 4 = 2 => n = -2
n + 4 = -2 => n = -6
Tìm n thuộc N để:
a] 38 - 3n chia hết cho n b]n + 5 chia hết cho n+1 c]3n+4chia hết cho n+1 d]2n+1 chia hết cho 16-3n
a) 38-3n : n =-3+38/n vậy n là Ư(38) nên n = 1 ; 2 ; 19 ; 38
b) ( n+5 ) : ( n + 1 ) hay ( n +1 + 4 ) : (n+1) vậy n+1 là Ư(4) nên n+1 = 1 ; 2 ; 4. Vậy n = 0;1;3
c) ( 3n + 4 ) :( n + 1 ) hay ( 3n + 1 + 3 ) : ( n + 1 ) vậy n + 1 là Ư(3) nên n + 1 = 1;3. Vậy n = 0;2
d) ( 2n + 1 ) : ( 16 - 3n ) hay 3(2n+1) : ( 16 - 3n ) hay 3(2n + 1 ) : 2(16 - 3n ) hay ( 6n + 3 ) : ( 32 - 6n ). Vậy ( 6n + 3 + 32 - 6n ) chia hết cho 16 - 3n hay 35 chia hết cho ( 16 - 3n ). 16 - 3n là Ư ( 35 ). Vậy 16 -3n = 1;5;7;35. n = 5;3 là thích hợp.
tìm n là STN:
3n + 4 chia hết cho n - 1
2n + 1 chia hết cho 16 - 3n
Cách 1 :
Ta có : 3n + 4 chia hết cho n - 1
=> 3n - 3 + 7 chia hết cho n - 1
=> 3(n - 1) + 7 chia hết cho n - 1
=> 7 chia hết cho n - 1
=> n - 1 thuộc Ư(7) = {-7;-1;1;7}
Ta có bảng :
n - 1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
Cách 2 :
Ta có : \(\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{7}{n-1}=3+\frac{7}{n-1}\)
Để 3n + 4 chia hết cho n - 1 thì 7 chia hết cho n - 1
=> 7 chia hết cho n - 1
=> n - 1 thuộc Ư(7) = {-7;-1;1;7}
Ta có bảng :
n - 1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
a)\(\frac{3n+4}{n-1}\)= \(\frac{3n-3+7}{n-1}\)= \(\frac{3.\left(n-1\right)}{n-1}\)+ \(\frac{7}{n+1}\)= \(3+\frac{7}{n-1}\)
Để \(3n+4\)\(⋮\)\(n-1\)thì \(n-1\)\(\in\)\(Ư\left(7\right)\)
Ta có bảng sau :
\(n-1\)\(1\) \(-1\) \(7\) \(-7\)
\(n\) \(2\) \(0\) \(8\) \(-6\).
Vậy \(n\)\(\in\)\([\)\(2\); \(0\); \(8\); \(-6\)\(]\).
Tìm n để :
a) 4n + 5 chia hết cho n
b) 38 +- 3n chia hết cho n
c) 3n + 4 chia hết cho n - 1
d) 2n - 1 chia hết cho 16 - 3n
4n+5 \(⋮\) n
Vì 4n \(⋮\) n nên 5 \(⋮\) n
\(\Rightarrow n\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)
Vậy:.............
a: =>5 chia hết cho n
=>\(n\in\left\{1;-1;5;-5\right\}\)
b: =>38 chia hết cho n
=>\(n\in\left\{1;-1;2;-2;19;-19;38;-38\right\}\)
c: =>3n-3+7 chia hết cho n-1
=>\(n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
d: =>6n-3 chia hêt cho 3n-16
=>6n-32+29 chia hết cho 3n-16
=>\(3n-16\in\left\{1;-1;29;-29\right\}\)
hay \(n\in\left\{\dfrac{17}{3};5;15;-\dfrac{13}{3}\right\}\)
12 - n chia hết cho 8 - n
2n + 1 chia hết cho 16 - 3n
12 - n ⋮8 - n
4+8-n ⋮8 - n
⇔4 ⋮8 - n⇒8 - n∈Ư(4)
Ta có bảng giá trị:
8-n | 1 | -1 | 2 | -2 | 4 | -4 |
n | 7 | 9 | 6 | 10 | 4 | 12 |
Tìm số tự nhiên n để:
a,2n+1 chia hết cho 16-3n
b,2n-3 chia hết cho 2n+2
đây là toán lớp 6 nha bn
a mk chịu
b
vì 2n-3 : 2n+2
suy ra 2(2n-3) : 2n+2
4n-6: 2n+2
mà 2(2n+2):2n+2
4n+4 :2n+2
4n+ 4 -(4n-6) : 2n+2
.còn lại tự tính
ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)
Tìm n thuộc N để:
a) n + 6 chia hết cho n
b) n + 5 chia hết cho n + 1
c) n2 + 2n + 7 chia hết cho n + 2
d) 2n + 1 chia hết cho 16 - 3n
e) 3n + 2 chia hết cho n - 1
f) 3n + 4 chia hết cho n - 1
c) n2 + 2n + 7 chia hết cho n + 2
=> n(n + 2) + 7 chia hết cho n + 2
Mà n(n + 2) chia hết cho n + 2
=> 7 chia hết cho n + 2
=> n + 2 \(\in\){-1;1;-7;7}
=> n \(\in\){-3;-1;-9;5}
a) n + 6 chia hết cho n
Mà n chia hết cho n
=> 6 chia hết cho n
=> n \(\in\){-1;1;-2;2;-3;3;-6;6}
Mà n thuộc N
=. n \(\in\){1;2;3;6}
b) n + 5 chia hết cho n + 1
=> (n + 1) + 4 chia hết cho n+ 1
Mà n + 1 chia hết cho n + 1
=> 5 chia hết cho n + 1
=> n + 1 \(\in\){-1;1;-5;5}
=> n \(\in\){-2;0;-6;4}
Mà n thuộc N
=> n \(\in\){0;4}