giải câu 14, 15 em với :
Giải giúp em câu 13, 14 , 15 giúp em vs em cần gấp lắm ạ
câu 13, 14, 15 ạ giúp em với
Câu 13:
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=48/10=4,8(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)
Xét ΔHAB vuông tại H có HM là đường cao
nên \(BM\cdot BA=BH^2\)
=>\(BM\cdot6=3,6^2\)
=>BM=2,16(cm)
Xét ΔHAC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\)
=>\(AN\cdot8=4,8^2\)
=>AN=2,88(cm)
ΔABN vuông tại A
=>\(AB^2+AN^2=BN^2\)
=>\(BN^2=2.88^2+6^2=44,2944\)
=>\(BN=\sqrt{44,2944}=\dfrac{6\sqrt{769}}{25}\left(cm\right)\)
Xét tứ giác AMHN có \(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
nên AMHN là hình chữ nhật
=>AH=MN=4,8(cm)
Xét ΔMBN có \(cosBMN=\dfrac{MB^2+MN^2-NB^2}{2\cdot MB\cdot MN}\)
\(=\dfrac{4,8^2+2,16^2-\dfrac{27684}{625}}{2\cdot4,8\cdot2,16}=\dfrac{-10368}{625}:\dfrac{2592}{125}=-\dfrac{4}{5}\)
=>\(sinBMN=\sqrt{1-\left(-\dfrac{4}{5}\right)^2}=\dfrac{3}{5}\)
Xét ΔBMN có \(\dfrac{NB}{sinBMN}=2R\)
=>\(2R=\dfrac{6\sqrt{769}}{25}:\dfrac{3}{5}=\dfrac{6\sqrt{769}}{25}\cdot\dfrac{5}{3}=\dfrac{2}{5}\sqrt{769}\)
=>\(R=\dfrac{\sqrt{769}}{5}\)
=>Chọn A
Giải dùm em câu6, 14, 15, 16, 17 với ạ. Em cảm ơn nhiều
Giúp e câu 14 và 15 có lời giải chi tiết với ạ
Câu 15:
Hàm số y=ax+b, với a<>0 nghịch biến trên R khi a<0
Từ đó bạn thay vào thôi
Câu 14:
Bạn cần biến đổi về dạng y=ax+b(a<>0) rồi sau đó lần lượt thay x=0 và y=0 vào là ra
Giải giúp em câu 14 với . E cám ơn
\(\overrightarrow{AB}=\left(0;2;2\right);\overrightarrow{AC}=\left(2;2;0\right);\overrightarrow{AD}=\left(1;1;\sqrt{2}\right)\)
\(\left[\overrightarrow{AB};\overrightarrow{AC}\right]=\left(-4;4;-4\right)\)
\(\Rightarrow\left[\overrightarrow{AB};\overrightarrow{AC}\right].\overrightarrow{AD}=-4+4-4\sqrt{2}=-4\sqrt{2}\ne0\)
\(\Rightarrow A;B;C;D\) không đồng phẳng hay ABCD là 1 tứ diện
Phương trình mặt cầu ngoại tiếp tứ diện có dạng:
\(x^2+y^2+z^2-2ax-2by-2cz+d=0\)
Thay tọa độ 4 điểm vào ta được hệ:
\(\left\{{}\begin{matrix}-2a+2c+d+2=0\\-2a-4b-2c+d+6=0\\-6a-4b+2c+d+13=0\\-4a-2b-2\left(\sqrt{2}-1\right)c+d+8-2\sqrt{2}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{6+\sqrt{2}}{8}\\b=\dfrac{16-\sqrt{2}}{8}\\c=\dfrac{-8+\sqrt{2}}{8}\\d=\dfrac{3}{2}\end{matrix}\right.\)
Pt mặt cầu: \(x^2+y^2+z^2-\dfrac{6+\sqrt{2}}{4}x-\dfrac{16-\sqrt{2}}{4}y+\dfrac{8-\sqrt{2}}{4}z+\dfrac{3}{2}=0\)
Làm và giải thích em câu 14 với ạ
Câu A đúng vì:
-Câu B vì nó không khai báo số 6 nên nó sai và không in ra được
-Câu C thì nó là 'Lop 8A' nên là kiểu dữ liệu chữ nên sẽ bị lỗi
Theo mình nghĩ là vậy
mn giải giúp em câu 15 với ạ, em cảm ơn
Giúp em giải câu 15 với ạ
mng giải giúp em câu 15 với ạ, em cảm ơn ạ!
Đài ơi, giải giúp cho Sarah đi, tớ không có viết và giờ vào giường rồi , good nigh