CMR với n thuộc N; n>=2 ta có:
\(A=\left(1-\frac{2}{6}\right)\left(1-\frac{2}{12}\right)\left(1-\frac{2}{20}\right)...\left(1-\frac{2}{n\left(n+1\right)}\right)>\frac{1}{3}\)\(\frac{1}{3}\)
a, cmr n^2+n chia hết cho 2 với n thuộc N
b,cmr a^2b+ b^2a chia hết cho 2 với a.b thuộc N
c, cmr51^n+47^102 chia hết cho 10 n thuộc N
a, \(n^2+n=n\left(n+1\right)\)
Vì n(n+1) là tích 2 số tự nhiên liên tiếp nên \(n\left(n+1\right)⋮2\)
Vậy ...
b, \(a^2b+b^2a=ab\left(a+b\right)\)
Nếu a chẵn, b lẻ thì \(ab\left(a+b\right)⋮2\)
Nếu a lẻ, b chẵn thì \(ab\left(a+b\right)⋮2\)
Nếu a,b cùng chẵn thì \(ab⋮2\Rightarrow ab\left(a+b\right)⋮2\)
Nếu a,b cùng lẻ thì \(a+b⋮2\Rightarrow ab\left(a+b\right)⋮2\)
c, \(51^n+47^{102}=\overline{...1}+47^{100}.47^2=\overline{...1}+\left(47^4\right)^{25}.47^2=\overline{...1}+\overline{...1}^{25}\cdot.\overline{...9}=\overline{...1}+\overline{...9}=\overline{...0}⋮10\)
CMR tổng 5 số tự nhiên liên tiếp chia hết cho 5
CMR n2+n chia hết cho 2 với nn thuộc N
CMR a2b + b2a chia hết cho 2 với a,b thuộc N
CMR 51n+47102chia hết cho 10 (n thuộc N)
4. chứng minh rằng
a) CMR tổng 5 số tự nhiên chia hết cho 5
b)CMR n2+n chia hết cho 2 với n thuộc N
c) CMR a2b + b2a chia hết cho 2 với a,b thuộc N
d) CMR 51n + 47102 chia hết cho 10 (n thuộc N)
CMR: chứng minh rằng
a) Gọi 5 số tự nhiên đó là a; a+1; a+2; a+3;a+4
Tổng 5 số đó là a + a+1 + a+2 + a+3 + a+4
= (a+a+a+a+a) + (1+2+3+4)
= 5a + 10
= 5(a+2) chia hết cho 5
Vậy tổng của 5 số tự nhiên chia hết cho 5
CMR: A= 7n + 3n-1 chia hết cho 9 (với mọi n thuộc N)
CMR: B= 4n + 15n-1 chia hết cho 9 (với mọi n thuộc N*)
1. CMR: 7n3+2009: 21 với mọi n thuộc Z
2. CMR: n là số nguyên lẻ thì B=n3+3n3n+2414 : 8
3. CMR:
A=n3 +11n11n+2016 : 6 với n thuộc Z
4. CMR: Với mọi n thuộc Z+
A=32+23n-2nn+6 : 7
1.Cmr 46n+296.13n chia hết cho 1947 với n >0,n thuộc N,n lẻ
2.Cmr 22n(22n+1-1)-1 chia hết cho 9 với n thuộc N*
bài 1. CMR: n4-1 chia hết cho 8 với mọi n lẻ
bài 2. CMR: B=\(\frac{n^3}{6}+\frac{n^2}{2}+\frac{n}{3}\)là số nguyên với mọi n thuộc Z
bài 3. CMR: (n2+n-1)2 -1 chia hết cho 24 với mọi n thuộc Z
\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
n lẻ
=> n - 1 và n + 1 chẵn
Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8
=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)
ai giải giúp mình bài 2 và bài 3 với
a, Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^3 chia 3 dư 1
b, CMR với mọi n,m thuộc N ta luôn có m.n(m^2-n^2) chia hết cho 3
Các cụ cho con bỏ câu này
đề sai bn nhé
Phải là Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^2 chia 3 dư 1
Đơn giản thôi:
Xét n=3k=> n^2=9k^2 chia hết cho 3
Xét n=3q+1=> n^2=9q^2+6q+1 chia 3 dư 1 do 9q^2 và 6q chia hết cho 3 và 1 chia 3 dư 1
Xét n=3p+2 => n^2=9p^2+6p+4 chia 3 dư 1 do 9p^2 và 6p chia hết cho 3 và 4 chia 3 dư 1
Vậy với mọi n thuộc N thì n^2 chia 3 dư 0 hoặc 1.
b) Có mn(m^2-n^2)
=mn(m-n)(m+n)
Nếu m hoặc n chia hết cho 3 thì xong luôn
Nếu m và n cùng dư khi chia cho 3 thì m-n chia hết cho 3
Nếu m và n khác dư khi chia cho 3 (lúc đó m,n ko chia hết cho 3) thì m+n chia hết cho 3
Vậy với mọi m,n thuộc N thì mn(m^2-n^2) chia hết cho 3
khó.......................................qáu
Biết x thuộc Q và 0<x<1.CMR : x^n<x với n thuộc N,n>=2.
\(x^n-x=x\left(x^{n-1}-1\right)\text{ Ta có:}0< x< 1\Rightarrow0< x^{n-1}< 1\Rightarrow x^{n-1}-1< 0\)
\(\Rightarrow x\left(x^{n-1}-1\right)< 0\Rightarrow x^n< x\text{ Ta có điều phải chứng minh}\)
CMR n^5 - n chia hết cho 5 với mọi n thuộc N
A= n5 -n = n(n2+1)(n+1)(n-1)
+Nếu n =5k => A chia hết cho 5
+ n =5k+1 => n-1 = 5k+1 -1 =5k chia hết cho 5 =>A chia heét cho 5
+ n= 5k+2 => n2+1 =(5k+2)2+1 = 25k2 +20k +4+1 =5(5k2+4k+1) chia hết cho 5 => A chia hết cho 5
+ n= 5k+3 => n2 +1 = tương tự chia hết cho 5 => A chia hết cho 5
+ n =5k+4 => n+1 = 5k+4+1 =5(k+1) chia hết cho 5 => A chia hêts cho 5
Vậy A= n5 -n chia hết cho 5 với mọi n thuộc N
A= n5 -n = n(n2+1)(n+1)(n-1)
+Nếu n =5k => A chia hết cho 5
+ n =5k+1 => n-1 = 5k+1 -1 =5k chia hết cho 5 =>A chia heét cho 5
+ n= 5k+2 => n2+1 =(5k+2)2+1 = 25k2 +20k +4+1 =5(5k2+4k+1) chia hết cho 5 => A chia hết cho 5
+ n= 5k+3 => n2 +1 = tương tự chia hết cho 5 => A chia hết cho 5
+ n =5k+4 => n+1 = 5k+4+1 =5(k+1) chia hết cho 5 => A chia hêts cho 5
Vậy A= n5 -n chia hết cho 5 với mọi n thuộc N