tính F=7/1.8+7/8.15+7/15.22+...+7/n.(n+7)
tính (1/8+1/8.15+1/15.22+....+1/43.50)x(4-3-5-7-...-49)/217
1.
a) \(\text{(3x-5)6=(3x-5)4}\)
2.
a)\(\frac{2}{7}.\frac{2012}{2011}-\frac{2}{2011}.\frac{1}{7}_{ }+\frac{4}{7}\)
b) \(\left(\frac{3}{1.8}+\frac{3}{8.15}+\frac{3}{15.22}+...+\frac{3}{106.113}\right)-\left(\frac{25}{50,55}\frac{25}{55.60}\frac{25}{60.65}...\frac{25}{95.100}\right)\)
ai nhanh đúng mk tk
Tính các tổng sau :
a) \(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)
b) \(\dfrac{1}{1.5}+\dfrac{1}{5.9}+\dfrac{1}{9.11}+...+\dfrac{1}{\left(4n-3\right)\left(4n+1\right)}\)
c) \(\dfrac{7}{1.8}+\dfrac{7}{8.15}+\dfrac{7}{15.22}+...+\dfrac{1}{\left(7n-6\right)\left(7n+1\right)}+\dfrac{1}{7n+1}\)
a: \(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2n+1-1}{2n+1}=\dfrac{1}{2}\cdot\dfrac{2n}{2n+1}=\dfrac{n}{2n+1}\)
b: \(=\dfrac{1}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{\left(4n-3\right)\left(4n+1\right)}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{4n-3}-\dfrac{1}{4n+1}\right)\)
\(=\dfrac{1}{4}\cdot\dfrac{4n}{4n+1}=\dfrac{n}{4n+1}\)
Tính các tổng sau :
a, \(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+......+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)
b, \(\dfrac{1}{1.5}+\dfrac{1}{5.9}+\dfrac{1}{9.11}+........+\dfrac{1}{\left(4n-3\right)\left(4n+1\right)}\)
c,\(\dfrac{7}{1.8}+\dfrac{7}{8.15}+\dfrac{7}{15.22}+....+\dfrac{1}{\left(7n-6\right)\left(7n+1\right)}+\dfrac{1}{7n+1}\)
a: \(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2n+1-1}{2n+1}\)
\(=\dfrac{n}{2n+1}\)
b: \(=\dfrac{1}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{\left(4n-3\right)\left(4n+1\right)}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{4n-3}-\dfrac{1}{4n+1}\right)\)
\(=\dfrac{1}{4}\cdot\dfrac{4n}{4n+1}=\dfrac{n}{4n+1}\)
Tính:
F=(\(\frac{3}{1.8}+\frac{3}{8.15}+\frac{3}{15.22}+....+\frac{3}{106.113}\) ) - (\(\frac{25}{50.55}+\frac{25}{55.60}+\frac{25}{60.65}+.....+\frac{25}{95.100}\))
F=(3/1.8+3/8.15+...+3/106.113)-(25/50.55+25/55.60+...+25/95.100) (1)
Đặt:
A=(3/1.8+3/8.15+3/15.22+...+3/106.113)
=3/7.(1-1/8+1/8-1/15+...+1/106-1/113)
=3/7.(1-1/113)
=3/7.112/113
=336/791. (2)
B=25/50.55+25/55.60+...+25/95.100
=25/5.(1/50-1/55+1/55-1/60+...+1/95-1/100)
=5.(1/50-1/100)
=1/20 (3)
Thay (2),(3) vào (1) ta được:
F=336/791-1/20
=5929/6720.
(\(\dfrac{1}{8}+\dfrac{1}{8.15}+\dfrac{1}{15.22}+....+\dfrac{1}{43.50}\)) . \(\dfrac{4-3-5-7-...-49}{217}\)
Chỗ phức tạp là ở biểu thức trong ngoặc thôi
Ta có
\(\dfrac{1}{8}+\dfrac{1}{8\cdot15}+\dfrac{1}{15\cdot22}...+\dfrac{1}{43\cdot50}\)
\(=\dfrac{1}{8}\cdot\left[\dfrac{1}{7}\left(\dfrac{1}{8}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{22}+....+\dfrac{1}{43}-\dfrac{1}{50}\right)\right]\)
\(=\dfrac{1}{8}\cdot\left[\dfrac{1}{7}\left(\dfrac{1}{8}-\dfrac{1}{50}\right)\right]=\dfrac{1}{8}\cdot\dfrac{3}{200}=\dfrac{3}{1600}\)
BÀi1:
Thực hiện phép tính :
\(\left(\frac{1}{8}+\frac{1}{8.15}+\frac{1}{15.22}+...+\frac{1}{43.50}\right)\frac{4-3-5-7-...-49}{217}\)
Bài 2:
Tìm giá trị lớn nhất của B:
\(B=\frac{x^2+17}{x^2+7}\)
Thử sức 2 bài này nhé , đề trường mình đo
Bài 1 :
\(\left(\frac{1}{8}+\frac{1}{8.15}+\frac{1}{15.22}+...+\frac{1}{43.50}\right)\frac{4-3-5-7-...-49}{217}\)
\(=\frac{1}{7}\left(1-\frac{1}{8}+\frac{1}{8}-\frac{1}{15}+\frac{1}{15}-\frac{1}{22}+...+\frac{1}{43}-\frac{1}{50}\right).\frac{5-\left(1+3+5+7+...+49\right)}{217}\)
\(=\frac{1}{7}\left(1-\frac{1}{50}\right).\frac{5-\left(12.50\right)+25}{217}\)
\(=\frac{1}{7}.\frac{49}{50}.\frac{5-625}{217}\)
\(=\frac{-2}{5}\)
Bài 2 :
\(B=\frac{x^2+17}{x^2+7}=\frac{\left(x^2+7\right)+10}{x^2+7}=1+\frac{10}{x^2+7}\)
Ta có : \(x^2\ge0\). Dấu '' = '' xảy ra khi :
\(x=0\Rightarrow x^2+7\ge7\)( 2 vế dương )
\(\Rightarrow\frac{10}{x^2+7}\le\frac{10}{7}\)
\(\Rightarrow1+\frac{10}{x^2+7}\le1+\frac{10}{7}\)
\(\Rightarrow B\le\frac{17}{7}\)
Dấu '' = '' xảy ra < = > x = 0
Vậy Max \(B=\frac{17}{7}\Leftrightarrow x=0\)
C=\(\frac{49}{1.8}\)+ \(\frac{49}{8.15}\)+ \(\frac{49}{15.22}\)+ ... + \(\frac{49}{141.148}\)
Tính giá trị biểu thức trên
\(C=\frac{49}{1.8}+\frac{49}{8.15}+\frac{49}{15.22}+...+\frac{49}{141.148}\)
\(\Rightarrow\frac{1}{7}C=\frac{7}{1.8}+\frac{7}{8.15}+\frac{7}{15.22}+...+\frac{7}{141.148}\)
\(=1-\frac{1}{8}+\frac{1}{8}-\frac{1}{15}+\frac{1}{15}-\frac{1}{22}+...+\frac{1}{141}-\frac{1}{148}\)
\(=1-\frac{1}{148}=\frac{148}{148}-\frac{1}{148}=\frac{147}{148}\)
\(\Rightarrow C=\frac{147}{148}\div\frac{1}{7}=\frac{147}{148}.7=\frac{1029}{148}\)
Vậy \(C=\frac{1029}{148}.\)
=49(1/1.8 +1/8.15+..)
có
1/1.8= (1-1/8)
1/8.15=1/8-1/15
=> C=49*1/7*(1-1/8+1/8-1/15+...+1/141-1/148)
C=7*(1-1/148)=...
học tốt
Bài làm:
Ta có: \(C=\frac{49}{1.8}+\frac{49}{8.15}+\frac{49}{15.22}+...+\frac{49}{141.148}\)
\(C=7\left(\frac{8-1}{1.8}+\frac{15-8}{8.15}+\frac{22-15}{15.22}+...+\frac{148-141}{141.148}\right)\)
\(C=7\left(1-\frac{1}{8}+\frac{1}{8}-\frac{1}{15}+\frac{1}{15}-\frac{1}{22}+...+\frac{1}{141}-\frac{1}{148}\right)\)
\(C=7\left(1-\frac{1}{148}\right)\)
\(C=7.\frac{147}{148}=\frac{1029}{148}\)
(-7/15).5/8.15/-7.(-32)
(-7/15) . 5/8 . 15/-7 . (-32)
=( -7/15 . 15/-7 ) . [ 5/8 . (-32)]
= 1 . ( -20 )
= -20