Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vietnhi Vo
Xem chi tiết
Nguyễn Thị BÍch Hậu
15 tháng 6 2015 lúc 11:34

\(M=x^2-4x+4+9=\left(x-2\right)^2+9\ge9\Rightarrow MinM=9\Leftrightarrow x=2\)

\(P=10x-x^2+6=-\left(x^2-10x+25\right)+25+6=31-\left(x-5\right)^2\le31\Rightarrow MaxP=31\Leftrightarrow x=5\)

Kị tử thần
Xem chi tiết
Nguyễn Phương Uyên
27 tháng 10 2019 lúc 20:31

M = (x - 1)(x - 3)(x - 4)(x - 6) + 10

M = (x-1)(x-6)(x-3)(x-4) + 10

M = (x^2 - 7x + 6)(x^2 - 7x + 12) + 10

đặt x^2 - 7x + 6 = t

=> M = t(t + 6) + 10

= t^2 + 6t + 10

= t^2 + 2.t.3 + 9 + 1

= (t+3)^2 + 1

(t + 3)^2 >

=> M > 1  

dấu = xảy ra khi 

(t + 3)^2 = 0

=> t + 3 = 0

mà t = x^2 - 7x + 6

=> x^2 - 7x + 6 + 3 = 0

=> x^2 - 7x + 9 = 0 

=>  

Khách vãng lai đã xóa
Kị tử thần
27 tháng 10 2019 lúc 20:54

sau đó là gì vậy

Khách vãng lai đã xóa
nguyen minh thu
Xem chi tiết
Vũ Ngọc Gà
28 tháng 3 2016 lúc 22:48

tach 14-x = 10-4-x roi sau do chac ban cung phai tu biet lam

Toan Phạm
Xem chi tiết
Tiêu Chiến
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 2 2021 lúc 12:36

a) Ta có: \(\left(2x-4\right)^4\ge0\forall x\)

\(\Leftrightarrow\left(2x-4\right)^4+5\ge5\forall x\)

Dấu '=' xảy ra khi 2x-4=0

\(\Leftrightarrow2x=4\)

hay x=2

Vậy: Giá trị nhỏ nhất của biểu thức \(M=\left(2x-4\right)^2+5\) là 5 khi x=2

b) Ta có: \(\left|x+2\right|\ge0\forall x\)

\(\Leftrightarrow-\left|x+2\right|\le0\forall x\)

\(\Leftrightarrow\left|x+2\right|+10\le10\forall x\)

Dấu '=' xảy ra khi x+2=0

hay x=-2

Vậy: Giá trị lớn nhất của biểu thức \(N=10-\left|x+2\right|\) là 10 khi x=-2

kim namjoon
Xem chi tiết
Trần Thanh Phương
11 tháng 4 2019 lúc 21:48

Bài 1a) 

\(P\left(x\right)=x^{2018}+4x^2+10\)

VÌ \(x^{2018}\ge0\forall x;4x^2\ge0\forall x\)

\(\Rightarrow x^{2018}+4x^2+10\ge10\forall x\)

Hay \(P\left(x\right)\ge10\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Trần Thanh Phương
11 tháng 4 2019 lúc 21:50

Bài 1b)

\(M\left(x\right)=x^2+x+1\)

\(M\left(x\right)=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(M\left(x\right)=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{-1}{2}\)

Trần Thanh Phương
11 tháng 4 2019 lúc 21:51

Bài 2a)

\(Q\left(x\right)=-x^4-1\)

Vì \(-x^4\le0\forall x\)

\(\Rightarrow-x^4-1\le-1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Nguyễn Thị Quỳnh Như
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 4 2023 lúc 13:32

2:

|x+4|>=0

=>-|x+4|<=0

=>B<=11

Dấu = xảy ra khi x=-4

Nhi Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 4 2023 lúc 0:02

1:

a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)

Dấu = xảy ra khi x=0

b: \(B=\sqrt{x+8}-7>=-7\)

Dấu = xảy ra khi x=-8

Hoang Yen Pham
Xem chi tiết
Akai Haruma
16 tháng 7 2021 lúc 23:12

Lời giải:

a. Áp dụng BĐT Cô-si:

$x^4+9\geq 6x^2$

$y^4+9\geq 6y^2$

$\Rightarrow x^4+y^4+18\geq 6(x^2+y^2)$

$A+18\geq 36$

$A\geq 18$

Vậy GTNN của $A$ là $18$ khi $x^2=y^2=3$

b.

$(x-y)^2\geq 0$

$\Leftrightarrow x^2+y^2\geq 2xy$

$\Leftrightarrow 2(x^2+y^2)\geq (x+y)^2$

$\Leftrightarrow 12\geq (x+y)^2$

$\Rightarrow B=x+y\leq \sqrt{12}$. Vậy $B$ max bằng $\sqrt{12}$ khi $x=y=\sqrt{3}$

$(x-y)^2\geq 0$

$\Leftrightarrow x^2+y^2\geq 2xy$

$\Leftrightarrow 6\geq 2C$

$\Leftrightarrow C\leq 3$. Vậy $C_{\max}=3$. Giá trị này đạt tại $x=y=-\sqrt{3}$