1) tìm giá trị nhỏ nhất của M = x(x-4) + 13
2) tìm giá trị lớn nhất của P = x(10-x) +6
tìm giá trị nhỏ nhất của M= x(x- 4)+13 ;
tìm giá trị lớn nhất của P= x(10- x)+6
\(M=x^2-4x+4+9=\left(x-2\right)^2+9\ge9\Rightarrow MinM=9\Leftrightarrow x=2\)
\(P=10x-x^2+6=-\left(x^2-10x+25\right)+25+6=31-\left(x-5\right)^2\le31\Rightarrow MaxP=31\Leftrightarrow x=5\)
tìm giá trị lớn nhất, nhỏ nhất (nếu có) của biểu thức
M=(x-1)(x-3)(x-4)(x-6)+10
M = (x - 1)(x - 3)(x - 4)(x - 6) + 10
M = (x-1)(x-6)(x-3)(x-4) + 10
M = (x^2 - 7x + 6)(x^2 - 7x + 12) + 10
đặt x^2 - 7x + 6 = t
=> M = t(t + 6) + 10
= t^2 + 6t + 10
= t^2 + 2.t.3 + 9 + 1
= (t+3)^2 + 1
(t + 3)^2 > 0
=> M > 1
dấu = xảy ra khi
(t + 3)^2 = 0
=> t + 3 = 0
mà t = x^2 - 7x + 6
=> x^2 - 7x + 6 + 3 = 0
=> x^2 - 7x + 9 = 0
=>
1) Cho biểu thức A=2006-x/6-x. tìm giá trị nguyên của x để A đạt giá trị lớn nhất. tìm giá trị lớn nhất đó.
2) tìm giá trị nhỏ nhất của biểu thức: P=4-x/14-x;(x thuộc Z). khi đó x nhận giá trị nguyên nào ?
tach 14-x = 10-4-x roi sau do chac ban cung phai tu biet lam
Cho x thuộc (-1/4,-2/5,7/-20,3/10)
Y Thuộc (3/14,1/7,5/21,2/3)
A)tìm giá trị lớn nhất của x+y
B) tìm giá trị nhỏ nhất của x+y
C) tìm giá trị lớn nhất của x-y
Với x là số nguyên.
a) Tìm giá trị nhỏ nhất của biểu thức: M = (2x - 4)4 + 5.
b) Tìm giá trị lớn nhất của biểu thức: N = 10 - / x + 2 /
a) Ta có: \(\left(2x-4\right)^4\ge0\forall x\)
\(\Leftrightarrow\left(2x-4\right)^4+5\ge5\forall x\)
Dấu '=' xảy ra khi 2x-4=0
\(\Leftrightarrow2x=4\)
hay x=2
Vậy: Giá trị nhỏ nhất của biểu thức \(M=\left(2x-4\right)^2+5\) là 5 khi x=2
b) Ta có: \(\left|x+2\right|\ge0\forall x\)
\(\Leftrightarrow-\left|x+2\right|\le0\forall x\)
\(\Leftrightarrow\left|x+2\right|+10\le10\forall x\)
Dấu '=' xảy ra khi x+2=0
hay x=-2
Vậy: Giá trị lớn nhất của biểu thức \(N=10-\left|x+2\right|\) là 10 khi x=-2
1. Tìm giá trị nhỏ nhất của
a) P(x) = x^2018 + 4x^2 + 10
b) M(x) = x^2 + x +1
2. Tìm giá trị lớn nhất của
a) Q(x) = -x^4 - 1
b) N(x) = -x^2 + 2x -2
Bài 1a)
\(P\left(x\right)=x^{2018}+4x^2+10\)
VÌ \(x^{2018}\ge0\forall x;4x^2\ge0\forall x\)
\(\Rightarrow x^{2018}+4x^2+10\ge10\forall x\)
Hay \(P\left(x\right)\ge10\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Bài 1b)
\(M\left(x\right)=x^2+x+1\)
\(M\left(x\right)=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(M\left(x\right)=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{-1}{2}\)
Bài 2a)
\(Q\left(x\right)=-x^4-1\)
Vì \(-x^4\le0\forall x\)
\(\Rightarrow-x^4-1\le-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
1) tìm giá trị nhỏ nhất của biểu thức:
A=/x-3/+8.
2) tìm giá trị nhỏ nhất của biểu thức:
B= 11- / 4+x /
3) tìm giá trị nhỏ nhất của biểu thức:
a) M=/x-3/+18-x/
b) M= /x-4/+/x-10/
2:
|x+4|>=0
=>-|x+4|<=0
=>B<=11
Dấu = xảy ra khi x=-4
Tìm giá trị nhỏ nhất của biểu thức sau:A=2+3×√x^2+1 B=√x+8 -7 Tìm giá trị lớn nhất của biểu thức sau: E=3-√x+6 F= 4/3+√2-x
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8
Cho x2+y2=6 .
a)Tìm giá trị nhỏ nhất của A=x 4+y4
b) Tìm giá trị lớn nhất của B=x+y; C=xy
Lời giải:
a. Áp dụng BĐT Cô-si:
$x^4+9\geq 6x^2$
$y^4+9\geq 6y^2$
$\Rightarrow x^4+y^4+18\geq 6(x^2+y^2)$
$A+18\geq 36$
$A\geq 18$
Vậy GTNN của $A$ là $18$ khi $x^2=y^2=3$
b.
$(x-y)^2\geq 0$
$\Leftrightarrow x^2+y^2\geq 2xy$
$\Leftrightarrow 2(x^2+y^2)\geq (x+y)^2$
$\Leftrightarrow 12\geq (x+y)^2$
$\Rightarrow B=x+y\leq \sqrt{12}$. Vậy $B$ max bằng $\sqrt{12}$ khi $x=y=\sqrt{3}$
$(x-y)^2\geq 0$
$\Leftrightarrow x^2+y^2\geq 2xy$
$\Leftrightarrow 6\geq 2C$
$\Leftrightarrow C\leq 3$. Vậy $C_{\max}=3$. Giá trị này đạt tại $x=y=-\sqrt{3}$