x-y=-9
y-z=-10
x+z=11
Cho 10z - 11y/ 9 = 11x - 9z/ 10 = 9y - 10x/ 11
Và x + y + z = -30
Tính x+y+z biết
x+y+z>11 và 8x+9y+10z=100 ( 1<= x,y,z ) (x,y,z là số tự nhiên )
Tìm nghiệm nguyên dương x , y , z biết x + y + z > 11 và 8x + 9y + 10z = 100
100 chia 9 dư 1 => 8x+10z chia 9 dư 1,chẵn (vì 9y chia hết cho 9)(1)
mà x+y+z>11
=> 8x+8y+8z>88
=> y+2z<12=> z<6=>x+y<5(2)
tương tự:
9x+9y+9z<99
=> z-x<1
=> z<1+x(3)
để thoả mãn cả (1) (2) và (3) thì:
x=4,y=2,z=5
x=3,y=z=4
x=2,y=6,z=3
x=1,y=8,z=2
x=9,y=2,z=1
Tìm x;y;z \(\in\)N* thỏa mãn x + y + z > 11 và 8x + 9y + 10z = 100
Tìm tất cả các số nguyên dương x,y,z thỏa mãn đồng thời các điều kiện:
x+y+z>11 và 8x+9y+10z=100
bạn bấm vào đúng 0 sẽ ra kết quả
mình làm bài này rồi
\(x+y+z>11\)
VA \(8x+9y+10z=100\)
TIM X,Y,Z ???
\(\hept{\begin{cases}x+y+z>1\\8x+9y+10z=100\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x+y+z\ge12\\8x+9y+10z=100\end{cases}}\)
\(\Rightarrow y+2z=100-8\left(x+y+z\right)\le100-8\cdot12=4\)
Mặt khác \(y,z\ge1\)suy ra \(3\le y+2z\le4\)\(\Rightarrow y+2z\in\left\{3,4\right\}\)
Nếu \(y+2z=3\Leftrightarrow y=z=1\Rightarrow x\in\left\{\text{Ø}\right\}\)Nếu \(y+2z=4\Leftrightarrow y=2;z=1\Rightarrow x=9\)Tìm \(x,y,z\in N\)* thỏa \(\begin{cases}x+y+z>11\\8x+9y+10z=100\end{cases}\)
tìm tất cả các số nguyên dương x,y,z thỏa mãn x+y+z>11 và 8x+9y+10z=100
bn nào giỏi làm hộ cái
a, x^2 - 10x + 16
b, 7x^2 - 9x + 2
c, x^5 - x^4y - xy^4 + y^5
d, x^2 - 6xy + 9y^2 - 100
e, ( x-z) (x+z) - y(2x-y)
g, 25x^2 -y^2 +4y - 4
k, (a+b+c)^3 - a^3 - b^3 - c^3
Tìm GTNN của các câu sau đây:
a) A=4x^2+y^2-12x+3y+5
b) B=x^2+9y^2+4x-6y-1
c) C= 25x^2+4y^2-10x-6y+3
d) D=x^2+y^2+z^2-x+2y+3z-1
b: Ta có: \(B=x^2+4x+9y^2-6y-1\)
\(=x^2+4x+4+9y^2-6y+1-6\)
\(=\left(x+2\right)^2+\left(3y-1\right)^2-6\ge-6\forall x,y\)
Dấu '=' xảy ra khi x=-2 và \(y=\dfrac{1}{3}\)