Chứng minh rằng tồn tại 1 số có dạng 200320032003...2003 chia hết cho 1991.
CMR : tồn tại số có dạng 200320032003.....2003 chia hết cho 1991
Chứng minh tồn tại số 200320032003 ... 2003 chia hết cho 2013
Michiel Girl Mít ướt chia hết cho 2013 mà
200320032003.............2003=2003*1000100010001...........10001
Mà 2003 không chia hết cho 2013 và 100010001............10001 cũng không chia hết cho 2013 nên số 200320032003........2003 không chia hết cho 2013
tick nha Liên dễ thương
Chứng minh rằng tồn tại một số có dạng 200320032003....2003 chia hết cho 99
Ai nhanh mình sẽ tick cho, nhớ giải rõ giùm mình nhé
Xét dãy gồm \(100\) số hạng :
\(2003\); \(20032003;\) .............. ; \(20032003............2003\)
Lấy \(100\) số hạng của dãy chia cho \(99\) ta được \(100\) số dư nhận các giá trị là :
\(0;\) \(1;\) \(2;...............;\)\(98\) (\(99\) giá trị)
\(\Rightarrow\) Có ít nhất 2 số dư bằng nhau
\(\Rightarrow\) Ở dãy trên có ít nhất 2 số đồng dư với nhau khi chia cho 99
\(\Rightarrow\) Hiệu 2 số đó có dạng :
\(20032003............200300.........000\) \(⋮\) \(99\)
\(20032003......2003\) . \(10^k\) \(⋮\) \(99\)
\(\Rightarrow\) \(20032003...........2003\) \(⋮\) \(99\) (do \(10^k\) và \(2013\) nguyên tố cùng nhau)
Vậy tồn tại một số có dạng \(20032003.................2003\) chia hết cho 99
\(\Rightarrowđpcm\)
Chúc bn học tốt!!!
CMR: Tồn tại số có dạng 20032003...2003 chia hết cho 1991
CMR: Có thể tìm được 1 số có dạng:
200320032003...2003000...0 (2003 số 2003) mà số đó chia hết cho 2004 hay không?
CMR có thể tìm đc số có dạng: 200320032003....200300...0(2003 số 2003) mà số đó chia hết cho 2004
xét dãy số sau:
2003;20032003;..;20032003(có n số 2003; n >2004)
nhậnxét: các số trong dãy đều là các số lẻ nên không chia hết cho 2004
=> số bất kì trong dãy chia cho 2004 có thể dư 1;2;3;...;2003 dảy trên có nhiều hơn 2003 số nên theo nguyên lì dirichle => có ít nhất 2 số chia cho 2004 có cùng mợt số dư
=> số có dạng 20032003...2003...2003(có 2003+m số 2003) và số 2003..2033(có m số 2003) có cùng số dư
=> hiệu của chúng chia hết cho 2004
hay số 2003200300..00(có 2003 số 2003) chia hết chi 2004
NHỚ TICK**
Chứng minh rằng tồn tại 1 số chia hết cho 1993 có dạng 19941994...1994.
Em đã được học nguyên lí Dirichlet chưa?
Đề của em bị thiếu nhé.
chứng minh rằng tồn tại số có dạng 2023^n-1 chia hết cho 2022 (với n thuộc N*)
Lời giải:
Cho $n=1$ thì $2023^n-1=2023^1-1=2022\vdots 2022$
Thực chất là với mọi số $n\in\mathbb{N}$ thì $2023^n-1\vdots 2022$
Chứng minh rằng tồn tại số có dạng 20192019...201900...0 chia hết cho 2018