giải phương trình sau:x^3+(x+1)^3+(x+2)^3=(x+3)^3
giải phương trình sau:x(x+3)2-3x=(x+2)3+1
x(x2+6x+9) - 3x= x3+6x2+12x+8+1
\(\Leftrightarrow\)x3+6x2+9x-3x=x3+6x2+12x+9
\(\Leftrightarrow\)6x=12x+9
\(\Leftrightarrow\)6x=-9
\(\Leftrightarrow\)x=-3/2
Vậy phương trình có 1 nghiệm duy nhất x=-3/2
x(x + 3)^2 - 3x = (x + 2)^3 + 1
<=> x(x^2 + 6x + 9) = x^3 + 6x^2 + 12x + 8 + 1
<=> x^3 + 6x^2 + 9x = x^3 + 6x^2 + 12x + 9
<=> 3x + 9 = 0
<=> 3x = -9
<=> x = -3
\(x\left(x+3\right)^2-3x=\left(x+2\right)^3+1\)
\(\Leftrightarrow x\left(x^2+6x+9\right)=x^3+6x^2+12x+8+1\)
\(\Leftrightarrow x^3+6x^2+9x=x^3+6x^2+12x+9\)
\(\Leftrightarrow3x+9=0\)
\(\Leftrightarrow3x=-9\)
\(\Leftrightarrow x=-3\)
Tìm m để phương trình sau:x^2+(m^2-2m).x-9+12m=0 có nghiệm x=3
Thay x=3 vào pt,ta được:
3^2+(m^2-2m)*3-9+12m=0
=>3m^2-6m+12m=0
=>3m^2+6m=0
=>m=0 hoặc m=-2
giải các pt sau:
x(x+3) - (2x-1) . (x+3) = 0
x(x-3) - 5 (x-3) = 0
3x + 12 = 0
2x (x-2) + 5 (x-2) = 0
`x(x+3) - (2x-1) . (x+3) = 0`
`<=>(x+3)(x-2x+1)=0`
`<=>(x+3)(-x+1)=0`
`** x+3=0`
`<=>x=-3`
`** -x+1=0`
`<=>x=1`
`x(x-3) - 5 (x-3) = 0`
`<=>(x-3)(x-5)=0`
`** x-3=0`
`<=>x=3`
`** x-5=0`
`<=>x=5`
`3x + 12 = 0`
`<=>3x=-12`
`<=> x=-4`
`2x (x-2) + 5 (x-2) = 0`
`<=>(x-2)(2x+5)=0`
`** x-2=0`
`<=>x=2`
`** 2x+5=0`
`<=> x= -5/2`
giải phương trình sau:
x^3+3x^2+3x-1=0
giải nhanh hộ m vs mn
sửa đề :
\(x^3-3x^2+3x-1=0\)
\(\Leftrightarrow\left(x-1\right)^3=0\Leftrightarrow x=1\)
giải bất phương trình sau:
x -( 2x -1) \(\le\) 3x - 3
`x - ( 2x - 1 ) <= 3x - 3`
`<=> x - 2x + 1 <= 3x - 3`
`<=> 3x - x + 2x >= 1 + 3`
`<=> 4x >= 4`
`<=> x >= 1`
Vậy `S = { x | x >= 1 }`
\(\Leftrightarrow x-2x+1\le3x-3\)
\(\Leftrightarrow-4x\le-4\)
\(\Leftrightarrow x\ge1\)
`x - (2x - 1) <= 3x - 3`
`<=> x - 2x + 1 <= 3x - 3`
`<=> 3x - x + 2x >= 1 + 3`
`<=> 4x >= 4`
`<=>` `x >= 1`
Vậy `S = {x | x >= 1}`
aGiải phương trình |x-1|+|x-2|=|2x-3|
b)Giải phương trình 1/(x−2 )+ 2/(x−3) − 3/(x−5) = 1/(x^2 −5x+6)
1. giải phương trình tích:
a) \(\left(x+3\right)\left(x^2+2021\right)=0\)
\(\)2. giải các phương trình sau bằng cách đưa về phương trình tích:
b) \(x\left(x-3\right)+3\left(x-3\right)=0\)
c) \(\left(x^2-9\right)+\left(x+3\right)\left(3-2x\right)=0\)
d) \(3x^2+3x=0\)
e) \(x^2-4x+4=4\)
`a,(x+3)(x^2+2021)=0`
`x^2+2021>=2021>0`
`=>x+3=0`
`=>x=-3`
`2,x(x-3)+3(x-3)=0`
`=>(x-3)(x+3)=0`
`=>x=+-3`
`b,x^2-9+(x+3)(3-2x)=0`
`=>(x-3)(x+3)+(x+3)(3-2x)=0`
`=>(x+3)(-x)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$
`d,3x^2+3x=0`
`=>3x(x+1)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$
`e,x^2-4x+4=4`
`=>x^2-4x=0`
`=>x(x-4)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$
1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)
=> S={-3}
Bài 1:
a) Ta có: \(\left(x+3\right)\left(x^2+2021\right)=0\)
mà \(x^2+2021>0\forall x\)
nên x+3=0
hay x=-3
Vậy: S={-3}
Bài 2:
b) Ta có: \(x\left(x-3\right)+3\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy: S={3;-3}
1) Giải các phương trình sau : a) x-3/x=2-x-3/x+3 b) 3x^2-2x-16=0 2) Giải bất phương trình sau: 4x-3/4>3x-5/3-2x-7/12
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)