Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Thanh Thuy
Xem chi tiết
tu thi thu trang
22 tháng 2 2017 lúc 18:02

k biet lam

kudo shinichi
26 tháng 3 2020 lúc 14:45

\(\text{Ta có:}x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5\ge0+5=5\)

\(P=\frac{1}{x^2+2x+6}\ge\frac{1}{5}\Rightarrow\text{GTLN của }P\text{ là:}\frac{1}{5}\text{ khi: }x=\frac{1}{5}\)

Khách vãng lai đã xóa
Cô nàng Thiên Yết
Xem chi tiết

a) Ta có \(x^2+2x+6=\left(x+1\right)^2+5\ge5\)

\(\Rightarrow P\le\frac{1}{5}\)

Dấu "=" xảy ra khi x=-1

Khách vãng lai đã xóa

\(Q=1-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}\)

Đặt \(a=\frac{1}{x+1}\)

\(\Rightarrow Q=1-a+a^2=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra khi \(a=\frac{1}{2}\Rightarrow x=1\)

Khách vãng lai đã xóa
Kientu Nguyen
9 tháng 2 2020 lúc 19:54

\(P=\frac{1}{x^2+2x+6}\)

để pmin thì \(x^2+2x+6max\)

\(\frac{1}{x^2+2x+6}=\frac{1}{\left(x+1\right)^2+5}\)lớn hơn hoặc bằng 1/5 

=>Pmin=1/5 khi và chỉ khi x=-1

Khách vãng lai đã xóa
Pham Thanh Thuy
Xem chi tiết
Trần Đức Thắng
11 tháng 6 2015 lúc 22:49

\(x^2+2.x.1+1+5=\left(x+1\right)^2+5\ge5\) ( VÌ \(\left(x+1\right)^2\ge0\))

=> \(\frac{1}{x^2+2x+6}\ge\frac{1}{5}\)

Vậy MaxP = 1/5 khi x = -1

câu b tương tự

Trung Quốc
Xem chi tiết
Võ Đông Anh Tuấn
11 tháng 11 2016 lúc 9:04

Ta có : \(\frac{x^2+x+1}{x^2+2x+1}=1-\frac{x}{\left(x+1\right)^2}\)

\(=1-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}=\left[\frac{1}{4}-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}\right]+\frac{3}{4}\)

\(=\left(\frac{1}{2}-\frac{1}{x+1}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy GTNNP\(\frac{3}{4}\Leftrightarrow x=1\)

TranNgocThienThu
Xem chi tiết
Phùng Minh Quân
26 tháng 5 2018 lúc 12:04

\(a)\) Ta có : 

\(\left|\frac{1}{2}-x\right|\ge0\) ( với mọi x ) 

\(\Rightarrow\)\(A=0,6+\left|\frac{1}{2}-x\right|\ge0,6\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{1}{2}-x=0\)

\(\Leftrightarrow\)\(x=\frac{1}{2}\)

Vậy GTNN của \(A\) là \(0,6\) khi \(x=\frac{1}{2}\)

Chúc bạn học tốt ~ 

Phùng Minh Quân
26 tháng 5 2018 lúc 12:09

\(b)\) Ta có : 

\(\left|2x+\frac{2}{3}\right|\ge0\) ( với mọi x ) 

\(\Rightarrow\)\(-\left|2x+\frac{2}{3}\right|\le0\) ( với mọi x ) 

\(\Rightarrow\)\(B=\frac{2}{3}-\left|2x+\frac{2}{3}\right|\le\frac{2}{3}\) ( cộng hai vế cho \(\frac{2}{3}\) ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(2x+\frac{2}{3}=0\)

\(\Leftrightarrow\)\(2x=\frac{-2}{3}\)

\(\Leftrightarrow\)\(x=\frac{-2}{3}:2\)

\(\Leftrightarrow\)\(x=\frac{-2}{3}.\frac{1}{2}\)

\(\Leftrightarrow\)\(x=\frac{-1}{3}\)

Vậy GTLN của \(B\) là \(\frac{2}{3}\) khi \(x=\frac{-1}{3}\)

Chúc bạn học tốt ~ 

nguyễn văn b
Xem chi tiết
Phùng Minh Quân
12 tháng 5 2019 lúc 10:51

C1 : 

\(B=\frac{4\left(x^2+x+1\right)}{4\left(x^2+2x+1\right)}=\frac{3\left(x^2+2x+1\right)}{4\left(x^2+2x+1\right)}+\frac{x^2-2x+1}{4\left(x^2+2x+1\right)}=\frac{3}{4}+\frac{\left(x-1\right)^2}{4\left(x^2+2x+1\right)}\ge\frac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=1\)

C2 : 

\(B=\frac{x^2+x+1}{x^2+2x+1}\)\(\Leftrightarrow\)\(Bx^2-x^2+2Bx-x+B-1=0\)

\(\Leftrightarrow\)\(\left(B-1\right)x^2+\left(2B-1\right)x+\left(B-1\right)=0\)

+) Nếu \(B=1\) thì \(x=0\)

+) Nếu \(B\ne1\) thì pt có nghiệm \(\Leftrightarrow\)\(\Delta\ge0\)

                                                        \(\Leftrightarrow\)\(\left(2B-1\right)^2-4\left(B-1\right)\left(B-1\right)\ge0\)

                                                        \(\Leftrightarrow\)\(4B^2-4B+1-4B^2+8B-4\ge0\)

                                                        \(\Leftrightarrow\)\(4B-3\ge0\)

                                                        \(\Leftrightarrow\)\(B\ge\frac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=1\)

Ai Don No
Xem chi tiết
Đạt
Xem chi tiết
Võ Đông Anh Tuấn
16 tháng 11 2016 lúc 10:07

\(\frac{x^2+x+1}{x^2+2x+1}=1-\frac{x}{\left(x+1\right)^2}\)

\(=1-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}=\left[\frac{1}{4}-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}\right]+\frac{3}{4}\)

\(=\left(\frac{1}{2}-\frac{1}{x+1}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

\(\Rightarrow P\ge\frac{3}{4}\)

Vậy \(Max_P=\frac{3}{4}\Leftrightarrow x=1\)

Chi Thảo
Xem chi tiết
Đinh Đức Hùng
6 tháng 4 2017 lúc 17:46

\(A=\frac{x^2+2x+5}{x+1}=\frac{\left(x^2+2x+1\right)+4}{x+1}=\frac{\left(x+1\right)^2+4}{x+1}=x+1+\frac{4}{x+1}\)

Để \(A=x+1+\frac{4}{x+1}\) là số nguyên <=> \(\frac{4}{x+1}\) là số nguyên 

=> x + 1 \(\inƯ\left(4\right)\) = { - 4; - 2; - 1; 1; 2; 4 }

=> x = { - 5; - 3; - 2; 0; 1; 3 }

Vậy x = { - 5; - 3; - 2; 0; 1; 3 }

Truong_tien_phuong
6 tháng 4 2017 lúc 17:47

Để biểu thức A đạt giá trị nguyên thì phân số \(\frac{x^2+2x+5}{x+1}\)phải đạt giá trị nguyên.

\(\Rightarrow x^2+2x+5⋮x+1\)

\(\Rightarrow x.\left(x+1\right)+2x+5-x⋮x+1\)

\(\Rightarrow x+5⋮x+1\)

\(\Rightarrow\left(x+1\right)+4⋮x+1\)

\(\Rightarrow4⋮x+1\)

\(\Rightarrow x+1\inƯ\left(4\right)=\left\{-4;-2;-1;+1;+2;+4\right\}\)

\(\Rightarrow x\in\left\{-5;-3;-2;0;+1;+3\right\}\)

vậy \(x\in\left\{-5;-3;-2;0;+1;+3\right\}\)thì A đạt giá trị nguyên