100+1-1+1-1+1-1+1-1+1-1+1 = ?
(1/100-1/2^2).(1/100-1/3^2).(1/100-1/4^2)........(1/100-1/2022^2)
1+1/2+1/3+1/4+...+1/100
1/1*100+1/2*99+1/3*98+...+1/99*2+1/100*1
\(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}\)
\(=\left(1+\frac{1}{100}\right)+\left(\frac{1}{2}+\frac{1}{99}\right)+....+\left(\frac{1}{50}+\frac{1}{51}\right)\)
\(=\frac{101}{1.100}+\frac{101}{2.99}+....+\frac{101}{50.51}\)
\(=101.\left(\frac{1}{1.100}+\frac{1}{2.99}+...+\frac{1}{50.51}\right)\)
Vế mẫu :
\(\frac{1}{1.100}+\frac{1}{2.99}+......+\frac{1}{1.100}\)
\(=2\left(\frac{1}{1.100}+\frac{1}{2.99}+....+\frac{1}{50.51}\right)\)
Vậy kết quả là :
\(\frac{101}{2}\)
Tử số = 1 + 1/2 + 1/3 + 1/4 + ... + 1/100
= (1 + 1/100) + (1/2 + 1/99) + ... + (1/50 + 1/51)
= 101/1.100 + 101/2.99 + ... + 101/50.51
= 101.(1/1.100 + 1/2.99 + ... + 1/50.51)
Mẫu số = 1/1.100 + 1/2.99 + 1/3.98 + ... + 1/99.2 + 1/100.1
= 2.(1/1.100 + 1/2.99 + ... + 1/50.51)
=> phân số đề bài cho = 101/2
\(=\left(\dfrac{1}{100}-\dfrac{1}{1^2}\right)\left(\dfrac{1}{100}-\dfrac{1}{4}\right)\cdot...\cdot\left(\dfrac{1}{100}-\dfrac{1}{10^2}\right)\cdot...\cdot\left(\dfrac{1}{100}-\dfrac{1}{400}\right)\)
\(=\left(\dfrac{1}{100}-\dfrac{1}{100}\right)\cdot\left(\dfrac{1}{100}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-\dfrac{1}{400}\right)\)
\(=0\cdot\left(\dfrac{1}{100}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-\dfrac{1}{400}\right)=0\)
tính: a)(-1)x(-1)^2x(-1)^3x(-1)^4x...x(-1)^9x(-1)^10
b)[1/100-1^2]x[1/100-(1/2)^2]x[1/100-(1/3)^2]x...x[1/100-(1/20)^2]
a,(1-1/2)*(1-1/3)*(1-1/4)....(1-1/99)*(1-1/100)
b,(1+1/2)*(1+1/3)*(1+1/4)....(1+1/99)*(1+1/100)
a) \(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{99}\right)\cdot\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{98}{99}\cdot\frac{99}{100}\)
\(=\frac{1\cdot2\cdot3\cdot...\cdot98\cdot99}{2\cdot3\cdot4\cdot...\cdot99\cdot100}=\frac{1}{100}\)
b) \(\left(1+\frac{1}{2}\right)\cdot\left(1+\frac{1}{3}\right)\cdot\left(1+\frac{1}{4}\right)\cdot...\cdot\left(1+\frac{1}{99}\right)\cdot\left(1+\frac{1}{100}\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{100}{99}\cdot\frac{101}{100}\)
\(=\frac{3\cdot4\cdot5\cdot...\cdot100\cdot101}{2\cdot3\cdot4\cdot...\cdot99\cdot100}=\frac{101}{2}\)
1-1/2+1/3-1/4+1/5-1/6+.....+1/99-1/100=1/51+1/52+1/53+1/54+..+1/100
Xét VT:
\(VT=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{99}-\frac{1}{100}\)
\(VT=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{100}=VP\)
=>đpcm
Ta xét vế trái:
\(vt=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(VT=VP\)
(1/100-12).(1/100-1/22).(1/100-1/32)....(1/100-1/202)
A = (\(\dfrac{1}{100}\) - 12).(\(\dfrac{1}{100}\) - \(\dfrac{1}{2^2}\)).(\(\dfrac{1}{100}\) - \(\dfrac{1}{3^2}\))...(\(\dfrac{1}{100}\) - \(\dfrac{1}{20^2}\))
A = (\(\dfrac{1}{10^2}\) - 12).(\(\dfrac{1}{10^2}\) - \(\dfrac{1}{2^2}\)).(\(\dfrac{1}{10^2}\) - \(\dfrac{1}{3^2}\))..(\(\dfrac{1}{10^2}\) - \(\dfrac{1}{10^2}\))....(\(\dfrac{1}{10^2}\) - \(\dfrac{1}{20^2}\))
A = (\(\dfrac{1}{10^2}\) - 12).(\(\dfrac{1}{10^2}\) - \(\dfrac{1}{2^2}\)).(\(\dfrac{1}{10^2}\) - \(\dfrac{1}{3^2}\))...0.(\(\dfrac{1}{10^2}\) - \(\dfrac{1}{20^2}\))
A = 0
chứng minh 100-(1+1/2+1/3+1/4+...+1/100)=1/2+1/3+1/4+...+99/100
so sánh:
a)C= \(\dfrac{100^{99}+1}{100^{100}+1}\) và D= \(\dfrac{100^{100}+1}{100^{101}+1}\)
b)E=\(\dfrac{2020^{2021}+1}{2020^{2022}+1}\) và F=\(\dfrac{2020^{2020}+1}{2020^{2021}+1}\)
c: \(100C=\dfrac{100^{100}+100}{100^{100}+1}=1+\dfrac{99}{100^{100}+1}\)
\(100D=\dfrac{100^{101}+100}{100^{101}+1}=1+\dfrac{99}{100^{101}+1}\)
100^100+1<100^101+1
=>\(\dfrac{99}{100^{100}+1}>\dfrac{99}{100^{101}+1}\)
=>100C>100D
=>C>D
b: \(2020E=\dfrac{2020^{2022}+2020}{2020^{2022}+1}=1+\dfrac{2019}{2020^{2022}+1}\)
\(2020F=\dfrac{2020^{2021}+2020}{2020^{2021}+1}=1+\dfrac{2019}{2020^{2021}+1}\)
2020^2022+1>2020^2021+1(Do 2022>2021)
=>\(\dfrac{2019}{2020^{2022}+1}< \dfrac{2019}{2020^{2021}+1}\)
=>2020E<2020F
=>E<F
Bài 4 :
a,Cho A= 1/2!+1/3!+.....+1/100!
CMR A<1
b, CMR :1-1/2+1/3-1/4+...+1/99-1/100=1/51+1/52+....+1/100