x + 10 = 40 x 2
x/2 = 5/y = z/8 = 10/40
giải: x/-2 = 10/40 suy ra x.40=10.(-2) = -20
x = (-20) : 40 = 0,5
còn 2 phép tính nữa ai giúp mik vs
10/40 = 1/4
x/2 = 1/4 => x.4 = 1.2 => x = 1.2/4 = 0,5
5/y = 1/4 => y.1 = 5.4 => y = 20
z/8 = 1/4 => z.4 = 8.1 => z = 8.1/4 = 2
Tính nhẩm:
a) 10 x 7 20 x 4 40 x 2 30 x 3
b) 60 : 2 90 : 3 70 : 7 40 : 2
a) 10 x 7 = ? Nhẩm: 1 chục x 7 = 7 chục 10 x 7 = 70 20 x 4 = ? Nhẩm: 2 chục x 4 = 8 chục 20 x 4 = 80 40 x 2 = ? Nhẩm: 4 chục x 2 = 8 chục 40 x 2 = 80 30 x 3 = ? Nhẩm: 3 chục x 3 = 9 chục 30 x 3 = 90 | b) 60 : 2 = ? Nhẩm: 6 chục : 2 = 3 chục 60 : 2 = 30 90 : 3 = ? Nhẩm: 9 chục : 3 = 3 chục 90 : 3 = 30 70 : 7 = ? Nhẩm: 7 chục : 7 = 1 chục 70 : 7 = 10 40 : 2 = ? Nhẩm: 4 chục : 2 = 2 chục 40 : 2 = 20 |
\(\sqrt{x-2}+\sqrt{10-x}=x^2-12x+40\)
\(ĐK:2\le x\le10\)
\(PT\Leftrightarrow\left(\sqrt{x-2}-2\right)+\left(\sqrt{10-x}-2\right)=x^2-12x+36\\ \Leftrightarrow\dfrac{x-6}{\sqrt{x-2}+2}+\dfrac{6-x}{\sqrt{10-x}+2}-\left(x-6\right)^2=0\\ \Leftrightarrow\left(x-6\right)\left(\dfrac{1}{\sqrt{x-2}+2}-\dfrac{1}{\sqrt{10-x}+2}-x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\left(tm\right)\\\dfrac{1}{\sqrt{x-2}+2}-\dfrac{1}{\sqrt{10-x}+2}-x+6=0\left(1\right)\end{matrix}\right.\)
Với \(x\le10\Leftrightarrow\left(1\right)\le\dfrac{1}{2\sqrt{2}+2}-\dfrac{1}{2}-10+6< 0\Leftrightarrow x\in\varnothing\)
Vậy \(x=6\)
10 x X + 80-5 x X x 2 = 40 x 2 các bạn nhanh nhé
1, (2+4+6+...+100)
2, 10-(3-x)=-10+17
3, 17-(3+x)=2-(7-8)
4, (5+x)-(15-31)=-20
5, 17-(3+x)+15-3=2
6, (41-x)-(13-17)=40-50
7, -(52-x)+(40-42)=-57+13
(-15) . x = -45
(+2) . x = -16
(-15) . x = 10.(-40)-5
(-3) . x = 2.(-7)+4
(-15)\(x\) = - 45
\(x\) = - 45 : (-15)
\(x\) = 3
Vậy \(x=3\)
(-15)\(x\) = 10.(-40).(-5)
-15\(x\) = -400.(-5)
-15\(x\) = 2000
\(x\) = 2000 : (-15)
\(x\) = - \(\dfrac{400}{3}\)
Vậy \(x=-\dfrac{400}{3}\)
(+2).\(x\) = - 16
\(x\) = -16 : (2)
\(x\) = - 8
Vậy \(x=-8\)
Rút gọn phân thức
a) \(p= \dfrac{ x^10-x^8+x^6-x^4+x^2 -1}{x^4 - 1}\)
b) \(Q = \dfrac{ x^40+x^30+x^20+x^10+1}{x^45 +x^40+x^35 +...+ x^10 +x^5+1}\)
a)
\(P=\dfrac{x^{10}-x^8+x^6-x^4+x^2-1}{x^4-1}\)
\(=\dfrac{x^8\left(x^2-1\right)+x^4\left(x^2-1\right)+\left(x^2-1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)
\(=\dfrac{\left(x^2-1\right)\left(x^8+x^4+1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)
\(=\dfrac{x^8+x^4+1}{x^2+1}\)
b)
\(Q=\dfrac{x^{40}+x^{30}+x^{20}+x^{10}+1}{x^{45}+x^{40}+x^{35}+...+x^{10}+x^5+1}\)
\(=\dfrac{x^{40}+x^{30}+x^{20}+x^{10}+1}{\left(x^{45}+x^{35}+...+x^5\right)+\left(x^{40}+x^{30}+...+1\right)}\)
\(=\dfrac{x^{40}+x^{30}+x^{20}+x^{10}+1}{x^5\left(x^{40}+x^{30}+...+1\right)+\left(x^{40}+x^{30}+...+1\right)}\)
\(=\dfrac{x^{40}+x^{30}+x^{20}+x^{10}+1}{\left(x^{40}+x^{30}+...+1\right)\left(x^5+1\right)}\)
\(=\dfrac{1}{\left(x^5+1\right)}\)
(x + 10) x 3 = 120
x + 10 = 120 : 3
x + 10 = 40
x = 40 - 10
x = 30
Tìm x :
a) ( 2.x - 40 ) : 10 = -55
b) (2.x + 15) : 5= -40
c) ( 2.x - 72) : 8 = 25
\(a,\left(2\times x-40\right):10=-55\)
\(2\times x-40=-55\times10\)
\(2\times x-40=-550\)
\(2\times x=-550+40\)
\(2\times x=-510\)
\(x=-510:2\)
\(\Rightarrow x=-255\)
\(b,\left(2\times x+15\right):5=-40\)
\(2\times x+15=-40\times5\)
\(2\times x+15=-200\)
\(2\times x=-200-15\)
\(2\times x=-215\)
\(x=-215:2\)
\(\Rightarrow x=-\dfrac{215}{2}\)
\(c,\left(2\times x-72\right):8=25\)
\(2\times x-72=25\times8\)
\(2\times x-72=200\)
\(2\times x=200+72\)
\(2\times x=272\)
\(x=272:2\)
\(\Rightarrow x=136\)
a. ( 2.x - 40 ) ÷ 10 = -55
2.x - 40 = (-55) × 10
2.x - 40 = -550
2.x = (-550) + 40
2.x = -510
x = (-510) ÷ 2
x = -255
b. ( 2.x + 15 ) ÷ 5 = -40
2.x + 15 = (-40) × 5
2.x + 15 = -200
2.x = (-200 ) - 15
2.x = -215
x = (-215) ÷ 2
x = -107,5
c. ( 2.x - 72 ) ÷ 8 = 25
2.x - 72 = 25 × 8
2.x - 72 = 200
2.x = 200 + 72
2.x = 272
x = 272 ÷ 2
x = 136