Cho hình bình hành abcd. Gọi O là giao điểm hai đường chéo AC và BD. Gọi M và N là trung điểm OD và OB. Gọi E là giao điểm AM và CD F là giao điểm AB và CN
Chúng minh tứ giác AMCN là hình bình hành
Tứ g8acs AECF là hình gì.
Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. M và N lần lượt là trung điểm của OD và OB. Gọi E là giao điểm của AM và CD. F là giao điêm của CN và AB. CMR:
a) Tứ giác AMCN là hình bình hành
b) AF= CE
c) DE= 1/2EC
Cho hình bình hành abcd có o là giao điểm của hai đường chéo ac và bd; m và n lần lượt là trung điểm của od và ob; gọi e là giao điểm của am và cd ; F là giao điểm của cn và ab. Chứng minh rằng :
A: tứ giác AMCN là hình bình hành(tui làm dc rồi); B: AF=CE; C: DE =1/2 EC
Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Gọi M, N theo thứ tự là trung điểm của OD và OB. Gọi E là giao điểm của AM và CD, gọi F là giao điểm của CN và AB. CM rằng:
a) AMCN là hình bình hành
b) AECF là hình bình hành
c) O là trung điểm của EF
d) \(DE=\dfrac{1}{2}EC\)
Giúp mình câu d nhé
Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo. Gọi M,N theo thứ tự là trung điểm của OB và OD. Gọi E là giao điểm của AM và CD, F là giao điểm của CN và AB
a) Chứng minh tứ giác AMCN là hình bình hành
b) Tứ giác AECF là hình gì? Vì sao?
c) Chứng minh E và F đối xứng nhau qua O
d) Chứng minh EC = 2DE
O là giao điểm của hai đường chéo AC,BD(gt)
=> AO=OC, OD=OB (vì ABCD là hình bình hành)
Lại có;
E là trung điểm của OD(gt)
=> OE=1/2.OD
F là trung điểm của OB(gt)
=> OF=1/2.OB
Mà OD=OB (cmt)
=> OE=OF
Tứ giác AFCE có: OA=OC(cmt) và OE=OF(cmt)
=> O là giao điểm của hai đường chéo AC,EF cắt nhau tại trung điểm mỗi đoạn
=> AFCE là hình bình hành
=> AE//CF (vì AE, CF là hai cạnh đối nhau)
Có AE//CF (cmt) => EK// CF (vì K thuộc AE)
Từ O vẽ đường thẳng cắt CD tại H sao cho OH//EK//CF
Xét tam giác DOH có: E là trung điểm của OD
EK//OH (theo cách vẽ đường thẳng OH)
=> K là trung điểm của DH
=> DK=KH (1)
Xét hình thang EKCF có: O là trung điểm của EF (theo câu a)
OH//EK//CF (theo cách vẽ đường thẳng OH)
=> H là trung điểm của KC
=> KH=HC (2)
Từ (1) và (2) => DK=KH=HC
Lại có: KC=KH+HC => KC= DK+DK (vì DK=KH=HC)
=> KC=2DK => DK=1/2KC
Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo M,N là trung điểm của OD và OB. Gọi E là giao điểm của AM và CD. F là giao điểm của CN và AB.Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo M,N là trung điểm của OD và OB. Gọi E là giao điểm của AM và CD. F là giao điểm của CN và AB.cmr
a.tứ giác AMCN là hình bình hành
b.tứ giác AECF là hình bình hành
c.AC,MN,EF đi qua một điểm(đồng quy)
hình bình hành ABCD. O là giao điểm của 2 đường chéo. Gọi M,N thứ tự là trung điểm của OD và OB. Gọi E là giao điểm của AM và DC, F là giao điểm của CN và AB
a,Cm tứ giác AMCN và AECF là hình bình hành
b, Cm E, F đối xứng với nhau qua O
c,Cm DE=1/2.EC
Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. M,N là trung điểm của OD và OB. E là giao đeliểm của AM và CD. F là giao điểm của CN và AB
CMR: a, Tứ giác AMCN là hình bình hành
b, Tứ giác AECF là hình bình hành
c, DE bằng một phần hai EC
Cho hình bình hành ABCD , O là giao điểm của 2 đường chéo , M và N là trung điểm của OD và OB
E là giao điểm của AM và CD ,
F là giao điểm của CN và AB
a) Chứng minh a tứ giác AMCN là hình bình hành
b) Chứng minh b AECF là hình bình hành
a)Ta có O giao điểm AC và BD trong hình bình hành ABCD (gt)
=> O là trung điểm AC và BD.
=> OD=OB
Mà OM=MD=\(\frac{1}{2}\)OD; ON=BN=\(\frac{1}{2}\)OB => OM=ON=OD=OB.
Xét hình bình hành ABCD có O trung điểm AC (hbh ABCD) và O trung điểm MN (OM=ON)
=> đpcm (điều phải chứng minh)
b) C/m tam giác ACE=ACF (cgc)(AC chung; \(\angle EAC=\angle FCA\) do song song; và cũng như vây với \(\angle ECA=\angle CAF\))
=>AE=FC mà \(AE \parallel FC\) do ăn theo hbh AMCN => đpcm
B1: cho hình bình hành ABCD có M là trung điểm của AB và N là trung điểm của CD.
1) C/m : tứ giác AMND là hình bình hành.
2) C/m: tứ giác AMCN là hình bình hành.
B2: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. Một đường thẳng qua O cắt AB tại E và cắt CD tại F.
1) C/m: O là trung điểm của EF.
2) C/m: tứ giác AECF là hình bình hành
3) C/m: tứ giác BDEF là hình bình hành.
B3: cho hình bình hành ABCD. Trên cạnh AB lấy điểm E, trên cạnh CD lấy điểm F sao cho AE=CF. Gọi O là giao điểm của AC và BD.
1) C/m: tứ giác AECF là hình bình hành.
2) C/m: O là trung điểm của EF.
B4: Cho hình bình hành ABCD có hai đường chéo AB và CD cắt nhau tại O. Gọi M,N,P,Q lần lượt là tủng điểm của các đoạn OA, OB, OC, OD.
1)C/m : tứ giác MNPQ là hình bình hành.
2) C/m: các tứ giác ANCQ , BPDM là các hình bình hành.
Giúp mik với nha, thanks !!!!
hỏi 1 lần luôn cho lẹ, k cần mn giải hết đâu, biết bài nào thì giải giúp th
1 . Hỏi nhiều vậy rảnh đâu mà ngồi giải từng bài mà rảnh đâu mà ngồi đánh chữ để hỏi chứ ? Hỏi thì hỏi ít thôi hổng ai trả lời hết đâu !!!
2 . Toán 8 là khó đó hổng dễ đâu , ai mà ngồi tính loạn óc lên được !!!
3 . Lần sau hỏi 1 đến 4 bài là vừa . Mà mấy bài ấy lấy trong đề kiểm tra hay cô thầy cho vậy . Nếu cô thầy cho ý thì phải có lý thuyết !!!
4 . Biết bài nào thì làm bài ấy , bài nào hổng biết thì thôi !!!
MÌNH KHUYÊN VẬY THÔI !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Cho hbh ABCD . Gọi O là giao điểm của AC và BD . M ,N là trung điểm của OD , OB . Gọi E là giao điểm của AM và CD. F là giao điểm của CN và AB
a) CM tứ giác AMCN là hbh
b)tứ giác AECF là hình j
c) CM E và F đx vs nha qua O
d) CM EC = 2DE