cho hso \(y=-x^3-3x^2+mx+1\). Tìm m để đạo hàm của hso có GTLN \(\left[0;1\right]\) là 10?
tìm m để hso \(y=\dfrac{mx+1}{x-2}\) có đạo hàm luôn âm trên từng khoảng xác định
\(y'=\dfrac{-2m-1}{\left(x-2\right)^2}\)
\(y'< 0\) với mọi x thuộc TXĐ \(\Leftrightarrow-2m-1< 0\Leftrightarrow m>-\dfrac{1}{2}\)
Tìm đạo hàm của hso \(f\left(x\right)=\dfrac{x}{\left(1+x\right)\left(2+x\right)\left(3+x\right)...\left(2017+x\right)}\) có đạo hàm tại \(x_0=0\)?
Đặt \(g\left(x\right)=\left(1+x\right)\left(2+x\right)...\left(2017+x\right)\)
\(\Rightarrow g\left(0\right)=1.2.3...2017=2017!\)
\(f\left(x\right)=\dfrac{x}{g\left(x\right)}\Rightarrow f'\left(x\right)=\dfrac{g\left(x\right)-x.g'\left(x\right)}{g^2\left(x\right)}\)
\(\Rightarrow f'\left(0\right)=\dfrac{g\left(0\right)-0.g'\left(x\right)}{\left[g\left(0\right)\right]^2}=\dfrac{g\left(0\right)}{\left[g\left(0\right)\right]^2}=\dfrac{1}{g\left(0\right)}=\dfrac{1}{2017!}\)
cho hso \(y=x^3-3x^2+3x+1\). Đạo hàm của hàm số đạt gtnn khi??
\(y'=3x^2-6x+3=3\left(x^2-2x+1\right)=3\left(x-1\right)^2\ge0\)
\("="\Leftrightarrow x=1\)
cho hso \(y=\dfrac{x^3}{3}-x^2+mx+m-1\). tìm tất cả các tham số m để y'≥0, \(\forall x\in\left(1,3\right)\)
\(y'=x^2-2x+m\)
\(y'\ge0\) ; \(\forall x\in\left(1;3\right)\Leftrightarrow x^2-2x+m\ge0\) ;\(\forall x\in\left(1;3\right)\)
\(\Leftrightarrow m\ge\max\limits_{\left(1;3\right)}\left(-x^2+2x\right)\)
Xét hàm \(f\left(x\right)=-x^2+2x\) trên \(\left(1;3\right)\)
\(-\dfrac{b}{2a}=1\) ; \(f\left(1\right)=1\) ; \(f\left(3\right)=-3\)
\(\Rightarrow m\ge1\)
cho hso \(y=mx^4+mx^2+2m-3\). tìm tất cả các tham số m để y'\(\ge\)0, \(\forall x\in\left(0;+\infty\right)\)
\(y'=4mx^3+2mx=2mx\left(2x^2+1\right)\)
Do \(2x\left(x^2+1\right)>0\) ;\(\forall x>0\)
\(\Rightarrow y'\ge0\) ;\(\forall x>0\) khi và chỉ khi \(m>0\)
cho hso \(y=\dfrac{x^2-mx+m}{x^2+1}\). biết pt \(y'=0\) có 2 ng x1, x2. tìm m để \(x_1+x_2=3\)?
\(y'=\dfrac{\left(2x-m\right)\left(x^2+1\right)-2x\left(x^2-mx+m\right)}{\left(x^2+1\right)^2}=\dfrac{2x-mx^2-m+2mx^2-2mx}{\left(x^2+1\right)^2}=\dfrac{mx^2+2\left(1-m\right)x-m}{\left(x^2+1\right)^2}\)
\(y'=0\Leftrightarrow mx^2+2\left(1-m\right)x-m=0\)
Xet \(m=0\) ko thoa man pt
Xet \(m\ne0\)
\(\left\{{}\begin{matrix}\Delta'>0\\\dfrac{2\left(m-1\right)}{m}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(1-m\right)^2+m^2>0\left(ld\right)\\m=-2\end{matrix}\right.\Rightarrow m=-2\)
tìm m để hso \(y=\dfrac{mx+1}{x-m}\) để y'<0, \(\forall x\in\left(0;1\right)\)
\(y'=\dfrac{-m^2-1}{\left(x-m\right)^2}\)
\(y'< 0\) ;\(\forall x\in\left(0;1\right)\Leftrightarrow\left[{}\begin{matrix}m\ge1\\m\le0\end{matrix}\right.\)
Tìm đk của m để hso \(y=x^3-x^2+mx-1\) có \(y'\ge0\) vơi moi x?
\(y'=3x^2-2x+m\)
\(y'\ge0\Leftrightarrow\left\{{}\begin{matrix}a>0\\\Delta'\le0\end{matrix}\right.\Leftrightarrow1-3m\le0\Leftrightarrow m\ge\dfrac{1}{3}\)
tìm a, b, c để hso \(f\left(x\right)=ax^2+bx+c\) có đạo hàm \(f'\left(x\right)\) thỏa mãn \(f\left(x\right)+\left(x-1\right)f'\left(x\right)=3x^2\) voi mọi x thuoc R
\(f'\left(x\right)=2ax+b\)
\(f\left(x\right)+\left(x-1\right)f'\left(x\right)=ax^2+bx+c+\left(x-1\right)\left(2ax+b\right)\)
\(=3ax^2+\left(2b-2a\right)x+c-b\)
Yêu cầu bài toán thỏa mãn khi: \(\left\{{}\begin{matrix}3a=3\\2b-2a=0\\c-b=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c=1\)