tim x thuoc z\(^{\left(x+8\right):\left(x+7\right)}\)
CHO E=\(\left(\frac{x^3}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{2+x}\right):\left(x+2+\frac{10-x^2}{x-2}\right)\)
a) Rut gon E
b) Tim x thuoc Z sao cho E thuoc Z
tim x y z
\(x\left(x+y+z\right)=13;y\left(x+y+z\right)=7;z\left(x+y+z\right)=-4\)
giup minh nhe minh dang can gap
\(\left\{{}\begin{matrix}x\left(x+y+z\right)=13\\y\left(x+y+z\right)=7\\z\left(x+y+z\right)=-4\end{matrix}\right.\) \(\Leftrightarrow x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=13+7-4\)
\(\Rightarrow\left(x+y+z\right)\left(x+y+z\right)=16\)
\(\Rightarrow\left(x+y+z\right)^2=16\)
\(\Rightarrow\left[{}\begin{matrix}x+y+z=4\\x+y+z=-4\end{matrix}\right.\)
Với \(x+y+z=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{13}{4}\\y=\dfrac{7}{4}\\z=-1\end{matrix}\right.\)
Với \(x+y+z=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{13}{4}\\y=-\dfrac{7}{4}\\z=1\end{matrix}\right.\)
\(\left|x\right|-5\frac{3}{7}\left|x\right|-\frac{3}{4}=2\left|x\right|+\left(-\frac{8}{7}\right)\)
Tim x
khi x>0, ta có
x - 38/7*x - 3/4 = 2*x + (-8/7)
-45/7*x=-11/28
x=-11/180( ko thoả )
khi x<0 có
-x -38/7x - 3/4 = -2x -8/7
bạn tự giải nhé rồi ktra dđiều kiện nhé !
tim x, y,z
\(x\left(x+y+z\right)=13\) \(y\left(x+y+z\right)=7\) \(z\left(x+y+z\right)=-4\)
Phân tích đa thức thành nhân tử:
1) \(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4\)
2) \(\left(x+y\right)^4+x^4+y^4\)
3) \(\left(x+y\right)^7+\left(y-2\right)^7+\left(z-x\right)^7\)
4) \(\left(x-y\right)^5+\left(y-z\right)^5+\left(z-x\right)^5\)
5) \(\left(x-y\right)^7+\left(y-z\right)^7+\left(z-x\right)^7\)
6) \(8\left(x+y+z\right)^3-\left(x+y\right)^3-\left(y+z\right)^3-\left(z+x\right)^3\)
7) \(x^3+y^4-6xy+8\)
8) \(x^3+y^3+3x^2+3y^2++6x+6y+8\)
9) \(a^3+ac^2-abc+b^2c+b^3\)
tìm x biết x ko thuoc {1;3;8;20} va
\(\frac{2}{\left(x-1\right).\left(x-3\right)}+\frac{3}{\left(x-3\right).\left(x-8\right)}+\frac{12}{\left(x-8\right).\left(x-20\right)}-\frac{1}{x-20}=\frac{-3}{4}\)
Phân tích các đa thức sau thành nhân tử:
a) \(\left(x+y\right)^7-x^7-y^7\)
b) \(\left(x-y\right)^7+\left(y-z\right)^7+\left(z-x\right)^7\)
c) \(x^3+y^3-6xy+8\)
d) \(x^3+y^3+3x^2+3y^2+6a+6y+8\)
e) \(a^3+ac^2-abc+b^2c+b^3\)
g) \(8\left(x+y+z\right)^3-\left(x+y\right)^3-\left(y+z\right)^3-\left(z+x\right)^3\)
help me
Toshiro Kiyoshi30GP Nguyễn Đình Dũng19GP Nguyễn Huy Thắng17GP Nguyễn Thanh Hằng16GP Nguyễn Thị Hồng Nhung15GP Rồng Đỏ Bảo Lửa11GP Mysterious Person10GP Đời về cơ bản là buồn... cười!!!8GP Huy Thắng Nguyễn8GP Ánh Dương Hoàng Vũ6GPcho x,y,z>0 thỏa mãn \(\left(x^2+y^2\right)\left(y^2+z^2\right)\left(z^2+x^2\right)=8\)
Tìm giá trị nhỏ nhất của S=\(xyz\left(x+y+z\right)^3\)
(có thể dùng BDT \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\))
tks mn<3
Tim x \(\in z\);
\(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)<0\)
Ta có: \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)<0\)
=>\(\left[\left(x^2-1\right)\left(x^2-7\right)\right].\left[\left(x^2-4\right)\left(x^2-10\right)\right]<0\)
=>\(\left[\left(x^2-4+3\right)\left(x^2-4-3\right)\right].\left[\left(x^2-7+3\right)\left(x^2-7-3\right)\right]<0\)
=>\(\left[\left(x^2-4\right)^2-3^2\right].\left[\left(x^2-7\right)^2-3^2\right]<0\)
=>\(\left[\left(x^2-4\right)^2-9\right].\left[\left(x^2-7\right)^2-9\right]<0\)
=>(x2-4)-9 và (x2-7)-9 khác dấu
Vì \(\left(x^2-4\right)^2-9>\left(x^2-7\right)^2-9\)
=>\(\left(x^2-4\right)^2-9>0=>\left(x^2-4\right)^2>9=>x^2-4>3=>x^2>7=>x>2\)
Và \(\left(x^2-7\right)^2-9<0=>\left(x^2-7\right)^2<9=>x^2-7<3=>x^2<10=>x<4\)
=>2<x<4
mà \(x\in Z\)
=>x=3
Vậy x=3