Chứng minh MN//BC
cho tam giác ABC trên tia đối của tia ab lấy điểm M sao cho AM = AB, AN =AC
a, chứng minh tam giác ABC=tam giác AMN
b, chứng minh MN=BC và MN//BC
a: Sửa đề: Trên tia đối của tia AC lấy N sao cho AN=AC
Xét ΔABC và ΔAMN có
AB=AM
\(\widehat{BAC}=\widehat{MAN}\)(hai góc đối đỉnh)
AC=AN
Do đó: ΔABC=ΔAMN
b; Ta có: ΔABC=ΔAMN
=>BC=MN
Ta có: ΔABC=ΔAMN
=>\(\widehat{ABC}=\widehat{AMN}\)
mà hai góc này là hai góc ở vị trí so le trong
nên BC//MN
cho ΔABC cân tại A.Vẽ AH⊥BC
a,Chứng minh ΔAHB=ΔAHC
b,Vẽ HM⊥AB,HN⊥AC.Chứng minh ΔAMN cân
c,Chứng minh MN//BC
a) Xét tam giác AHB vuông tại H và tam giác AHC vuông tại H:
AB = AC (Tam giác ABC cân tại A).
\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A).
\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-gn\right).\)
b) Xét tam giác ABC cân tại A:
AH là đường cao (AH ⊥ BC).
\(\Rightarrow\) AH là đường trung tuyến (T/c tam giác cân).
\(\Rightarrow\) H là trung điểm BC.
Xét tam giác MBH vuông tại M và tam giác NCH vuông tại N:
BH = CH (H là trung điểm BC).
\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A).
\(\Rightarrow\Delta MBH=\Delta NCH\left(ch-gn\right).\\ \Rightarrow BM=CN.\)
Ta có: \(AM=AB-BM;AN=AC-CN.\)
Mà \(\left\{{}\begin{matrix}AB=AC\\BM=CN\end{matrix}\right.\) (cmt).
\(\Rightarrow AM=AN.\Rightarrow\Delta AMN\) cân tại A.
c) Xét tam giác AMN cân tại A:
\(\widehat{AMN}=\dfrac{180^o-\widehat{A}}{2}.\)
Xét tam giác ABC cân tại A:
\(\widehat{ABC}=\dfrac{180^o-\widehat{A}}{2}.\)
\(\Rightarrow\widehat{AMN}=\widehat{ABC}.\\ \Rightarrow MN//BC\left(dhnb\right).\)
a) xét ΔAHB và ΔAHC có:
góc H1=góc H2=90độ
AH chung
góc B=góc C (ΔABC cân tại A)
=> ΔABH=ΔAHC(CH−GN)
=>góc A1=góc A2(2 góc tương ứng)
b) xét ΔAHN và ΔAHM có:
góc M=góc N=90độ
AH chung
góc A1=góc A2(cmt)
=> ΔAHN=ΔAHM(CH−CN)
=> HN = HM (2 cạnh tương ứng)
=> AN = AM (2 cạnh tương ứng)
ΔAMN có: AN = AM (cmt)
=> ΔAMN cân tại A
c) đặt điểm giao nhau giữa AH và MN là K
xét ΔAKM và ΔAKN có:
AK chung
góc A1=góc A2(cmt)
AM = AN (ΔAMN cân tại A)
=> ΔAKM=ΔAKN(c.g.c)
=> góc K1=góc K2
mà 2 góc trên ở vị trí kề bù
=> góc K1=góc K2=90độ
=> MN ⊥AH
mà BC⊥AH
=> MN // BC (tính chất)
Tam giác ABC có M,N là trung điểm AB,AC. Kéo dài MN 1 đoạn lấy ND=NM.
1) Chứng minh CD song song AM và CD=AM
2) Chứng minh tam giác MCD = tam giác CMB
3) Chứng minh MN song song BC, MN=BC / 2
b) Vì hai tam giác ở trên bằng nhau nên CD=AM=MB
Vì CD//AM hay CD//MB=> góc DCM=BMC(slt)
Xét tamg iasc MCD và CMB có
BM=CD(cmt)
góc DCM=BMC(cmt)
MC cạnh chung
vậy hai tam giác băng nhau theo trường hợp(c.g.c)
c) Vì tam giác MCD=CMB nên góc DMC=BCM(góc tương ứng)
mà chúng ở vị trí so le trong nên MD//BC hay MN//BC.
và MD=BC, mà MN=1/2MD=> MN=BC/2
Tam giác ABC có M,N là trung điểm AB,AC. Kéo dài MN 1 đoạn lấy ND=NM.
1) Chứng minh CD song song AM và CD=AM
2) Chứng minh tam giác MCD = tam giác CMB
3) Chứng minh MN song song BC, MN=BC / 2
Cho ∆ABC cân tại A, kẻ AH ⊥ BC tại H.
a) Chứng minh rằng ∆ABH = ∆ACH
b) Giả sử AB = 8cm; BC = 6cm. Tính AH?
c) Kẻ HM ⊥ AB tại M, HN ⊥ AC tại N. Chứng minh MN // BC
d) Gọi I là trung điểm của MN, chứng minh rằng A, I, H thẳng hàng.
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
b: BH=6/2=3(cm)
Xét ΔABH vuông tại H có \(AB^2=AH^2+HB^2\)
hay \(AH=\sqrt{8^2-3^2}=\sqrt{55}\left(cm\right)\)
c: Xét ΔAHM vuông tại M và ΔAHN vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAHM=ΔAHN
Suy ra: AM=AN
Xét ΔABC có AM/AB=AN/AC
nên MN//BC
Bài 1:
a: Xét ΔBNM có AD//NM
nên MN/AD=BM/BD
=>MN*BD=AD*BM
b: ME/AD=CM/CD=CM/BD
MN/AD+ME/AD=BM/BD+CM/BD=BC/BD=2
c:
Xét ΔBÂC có BE là phân giác
nen CE/CA=BC/BA
=>MC/MD=CE/CA=BC/BA
cho tam giác abc m thuộc ab n thuộc ac, biết AM/AB = MN/BC. Chứng minh MN//BC
Ta có : \(\dfrac{AM}{AB}=\dfrac{MN}{BC}\left(gt\right)\Rightarrow\)MN//BC
cho tứ giác abcd có m n p q lần lượt là trung điểm của ad ab bc cd.
chứng minh mn//ac và mn = 1 phần 2 ac
,chứng minh rằng mn=pq và mn//pq
Cho tam giác ABC nhọn. Một đường thẳng song song với BC cắt AB tại M cắt AC tại N
Cho MN=5cm; BC=15,5cm; AN=7cm. Tính CN
Chứng minh rằng: MB/AB+MN/BC=1
Gọi I là trung điểm của MN. AI cắt BC tại D. Chứng minh D là trung điểm của BC
Cho ABC có AB = 6 cm; AC = 8 cm; BC = 10 cm. a) Chứng tỏ tam giác ABC vuông tại A. b)Vẽ phân giác BM của B ( M thuộc AC), từ M vẽ MN BC ( N BC). Chứng minh MA = MN c) Tia NM cắt tia BA tại P. Chứng minh AMP = NMC rồi suy ra MP > MN
a, Ta có : BC2 = 102 = 100
AB2 + AC2 = 62 + 82 = 36 + 64 = 100
=> AB2 + AC2 = BC2
=> Tam giác ABC vuông tại A ( Định lý Py - ta - go đảo )
Study well ! >_<
a)Xét\(\Delta ABC\)có:\(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=36+64=100\)
Ta thấy:\(BC^2=AB^2+AC^2\left(=100\right)\)
\(\Rightarrow\Delta ABC\)cân tại A(Định lí Py-ta-go)
b)Xét\(\Delta MAB\)và\(\Delta MNB\)có:
MB là cạnh chung
\(\widehat{MAB}=\widehat{MNB}\left(=90^o\right)\)
\(\widehat{MBA}=\widehat{MBN}\)(BM là tia p/g của \(\widehat{ABN}\))
Do đó:\(\Delta MAB=\Delta MNB\)(cành huyền-góc nhọn)
\(\Rightarrow MA=MN\)(2 cạnh t/ứ)
c)Xét\(\Delta MAP\)và\(\Delta MNC\)có:
\(MA=MN\)(cmt)
\(\widehat{AMP}=\widehat{NMC}\)(2 góc đối đỉnh)
\(\widehat{MAP}=\widehat{MNC}\left(=90^o\right)\)
Do đó:\(\Delta MAP=\Delta MNC\)(cạnh gv-góc nhọn)
\(\Rightarrow MP=MC\)(2 cạnh t/ứ)
Ta có:MN<MC(ĐL mối QH giữa đường vg và đg xiên)
mà MC=MP(cmt)
\(\Rightarrow MN< MP\)hay MP>MN
Lúc nãy mik đánh nhầm căn cứ câu a bn sửa lại thành "Định lí Py-ta-go đảo" nhé!!!!